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A NUMERICAL METHOD FOR CALCULATING THE WAVE DRAG OF

A CONFIGURATION FROM THE SECOND DERIVATIVE OF

THE AREA DISTRIBUTION OF A SERIES OF

EQUIVALENT BODIES OF REVOLUTION*

By Lionel L. Levy, Jr._ and Kenneth K. Yoshikawa

SUMMARY

A method based on linearized and slender-body theories_ which is

easily adapted to electronic-machine computing equipment_ is developed

for calculating the zero-lift wave drag of single- and multiple-component

configurations from a knowledge of the second derivative of the area dis-

tribution of a series of equivalent bodies of revolution. The accuracy

and computational time required of the method to calculate zero-lift wave

drag is evaluated relative to another numerical method which employs the

Tchebichef form of harmonic analysis of the area distribution of a series

of equivalent bodies of revolution.

The results of the evaluation indicate that the total zero-lift wave

drag of a multiple-component configuration can generally be calculated

most accurately as the sum of the zero-lift wave drag of each component

alone plus the zero-lift interference wave drag between all pairs of

components. The accuracy and computational time required of both methods

to calculate total zero-lift wave drag at supersonic Mach numbers is

comparable for airplane-type configurations. For systems of bodies of

revolution both methods yield similar results with comparable accuracy;

however, the present method only requires up to 60 percent of the comput-

ing time required of the harmonic-analysis method for two bodies of

revolution and less time for a larger number of bodies.

INTRODUCTION

As shown in reference i_ the linearized theory value of the wave drag

of any arbitrary configuration in a steady supersonic flow can be calcu-

lated from a knowledge of the second derivative of the area distribution

of a series of equivalent bodies of revolution obtained from areas and
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forces in oblique planes. For slender nonlifting configurations the
wave-drag contribution of the force term is zero or is sufficiently small
that it can be neglected. The zero-lift wave drag of such configurations
is given to a good approximation by the supersonic area rule developed in
reference 2. The infinite series form of the supersonic area rule in ref-
erence 2 utilizes a knowledge of the first derivative of the area distri-
bution of the series of equivalent bodies of revolution obtained from only
the areas in oblique planes. In reference 3 the supersonic area rule was
expressed in a form which permits a numerical solution of the infinite
series from a knowledge of the area distribution of the series of
equivalent bodies of revolution.

In this report a method applicable to slender nonlifting configura-
tions is developed which utilizes a knowledge of the second derivative of
the area distribution of the equivalent bodies of revolution. The method
is developed from the integral form of the wave-drag equation given in
reference ! for nonlifting configurations. By a simple approximation of
the second derivative of the area distribution of the equivalent bodies
of revolution_ the zero-lift wave drag is expressed in a finite series
which can be evaluated numerically. The finite series form of the present
method is particularly attractive in its application to the calculation
of zero-lift interference wave drag between any pair of componentsof a
configuration.

The usefulness of the present method depends_of course, upon the
availability of methods for finding the second derivative of the area
distribution of equivalent bodies of revolution. Reference 4 contains
information from which it is possible to calculate the second derivative
of the area distribution of bodies of revolution. A method for finding
the second derivative of the area distribution (as well as the first
derivative and the area distribution) of wing and tail-surface components
of the equivalent bodies of revolution is presented in an appendix.

The present method of zero-lift wave-drag calculation will be
evaluated relative to the method of reference 3 with regard to accuracy
and computational time required. Numerical values of zero-lift wave-drag
solutions for several simple analytical shapes computedby the present
method will be comparedwith numerical solutions obtained by the method
of reference 3 and with analytical solutions. Equations of the area dis-
tribution, the first derivative of the %rea distributlo_ _nd the second
derivative of the area distribution of two families f i_rs cr._
surfaces will also be presented in an appendix.



SY_%OLS

aij

An(_,8)

b

bo

C o

I

l(aij,_d)

K

/!

distance between the ith and jth values of coordinates in

the free-stream direction (see eq. (41))

coefficients of a Fourier sine series expansion of S'(x,_,8)

span of a wing or tail surface

span of an extended wing or tail surface (see sketch (c))

wing or tail-surface chord at the vertical plane of symmetry

spanwise variation of the dimensionless half-chord of a wing

or tail surface

lateral distance bet_.reen the longitudinal axes of a pair of

bodies of revolution

wave drag or zero-lift wave drag of a configuration

wave drag or zero-lift wave drag of an equivalent body of

revolution of a configuration

total number of points specified on a given curve

integral function used to evaluate the zero-lift interference

wave drag between a pair of bodies of revolution (see

eqs. (40) and (43))

tangent of the sweep angle of the 50-percent chord line of

any "sheared" panel of an extended wing or tail surface in

dimensionless coordinates

length of an equivalent body of revolution in the positive

x direction, _(_,@)+Zz(_,8) = total equivalent-body length

length of an equi_ient body of revolution in the negative
:._ direction

L_ontal projecti: _ .,

liven configu:_ :
.,<_ "onlz "b._ L ',

,_ L'<2'._'. ,.c, i;u'e3,1_L d¢<q %!_

_-_<.:Lfb distribution ff_tercepted on 'm

<'..... et of paral_L:L _. '_!que planes

r': : ; ,c
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S

i)

Sm"(x )

t o

t(x,y)

x,y,z

[,_,_

reference area upon which drag coefficient or dimensionless

area is based

frontal projection of the area distribution intercepted on a

given configuration by a set of parallel oblique planes

tangent to the Mach cones

increment between values of the second derivative of the area

distribution of a configuration at points xi_ I and xi

mean value of the second derivative of the area distribution

of a configuration (see eq. (45))

maximum thickness of wing or tail surface at the vertical

plane of symmetry

thickness distribution of a wing or tail surface

Cartesian coordinates in the free-stream, spanwise, and

thickness directions, respectively

transformation defined by equation (C17) which defines any

point in the dimensionless extended plan form of a "sheared"

wing or tail surface as the local dimensionless chord

station measured from the 50-percent chord

longitudinal distance between the lateral axes of a pair of

bodies of revolution

taper ratio of a wing or tail surface; ratio of the tip chord

to that at the vertical plane of symmetry

dimensionless Cartesian coordinates in the free-stream,

spanwise, and thickness directions, respectively

dimensionless thickness distribution of the local airfoil

section

dimensionless thickness distribution of a "sheared" wing or
tail surface

angle defining the orientation of the parallel oblique planes

tangent to the Mach cones (see sketch (a))

spanwise variation of the dimensionless thickness along lines

of constant percent chord

tan-l_ cos 8
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Subscripts

B

E, H

H(_,)

i, j

n

R

t

T

u

W

body

body E or body H

quantities measured in the coordinate system of body H but

related by a transformation to the coordinate system of

body E

ith and jth points, respectively, of the total number of

points specified on a curve

lower limit of integration

nth term of a Fourier sine series expansion of S'(x,_,8)

reference

tip of a wing or tail surface

total

upper limit of integration

wing

Superscripts

differentiation with respect to a coordinate in the free-

stream direction

dimensionless value of any symbol not specifically listed as

such (also see appendix A)

METHOD

Review of Basic Theory

The linearized-Zheory value cf the wave drag of any arbitrary

,._ _ _e_vn_ iconfiguration in _ stead;/ _uper_onic --_r :_Low is stated in - _--_= -"_

to be the average _,f the wave drag of a series of equivalent bodies of

revolution and :':z_ be expressed anal_;t-cc!Av %y



where

i p 2_

= D(_,e)de
%

(i)

- -- - -

!2q L'(x2'_'e)] _nlxz-x2Jdxzdx2 (2)

Z y

_-'% The quantity S(x,_,e) is the frontal

_%_ projection of the streamwise areaX =x-_ycos e-_zsin 8

_lp,ojec,,on distribution intercepted on the given

of ne,forceconfiguration by parallel oblique

_._._ planes tangent to the Mach cones.

Similarly, L(x,_,e) is the frontal

_ projection of the lift distribution

over the given configuration measured

in the same oblique planes. The

___i primes denote differentiation with
respect to x. The coordinate system,

___-_ angles, Mash planes, and the direction

......_y of the net force are defined in
sketch (a).

X-Xo=_ycos 8

Sketch (a)

In this report only slender nonlifting configurations will be

considered. For these configurations L(x,_,8) can be neglected and the

zero-lift wave drag of the separate equivalent bodies of revolution for

such configurations is given by

q _Z(_,O)F_(_,O)S,,(xI,_,O)S,,(xI,_,O)ZnlxI_X21dxIdX2
D(_,e) : 2_, l(S,e)d__z(B,e )

(3)

The analysis in reference i imposes no restriction on the slope of the

area distribution at the ends of the equivalent bodies of revolution or

of the given configuration. It should be noted that this freedom from

end-condition restrictions requires rigorous adherence to the concept of

the oblique planes when determining the area distribution of the equivalent

bodies. However, for nonlifting slender pointed bodies of revolution, the
normal cross-sectional area distribution can be used if the end conditions

of the bodies are such that



= = 0 (4)

For isolated nonlifting slender pointed bodies of revolution for which

the slope of the area distribution at the base is not zero, the normal

cross-sectional area distribution can be used only if the zero-lift wave

drag is calculated by slender-body theory. The zero-lift wave-drag equa-

tion given by slender-body theory for these isolated bodies of revolution

is given in reference 5 and can be written

q __Z_f_S"(xl)S"(x2)_n,xl-x2,dxldx2 +D = - _-_
i - i

where R(_) is the radius at the base of the body. The lower limits of

integration, -Z1, imply merely that the origin of the coordinate system

need not be chosen at the half-body length. For bodies of revolution with
zero slope of the area distribution at the base, S'(Z) = O, the second

term of equation (5) vanishes and the resulting equation is identical to

the equation (3) for equivalent bodies of revolution, once values of B

and 8 are specified.

The area distribution of a single body of revolution is independent

of 8 (but may change with _) and the linearized-theory value of the

zero-lift wave drag is given by equation (3) without recourse to equa-

tion (i). Furthermore, if the body is sufficiently slender that neglect-

ing the change in the area distribution with _ produces only a negligible

effect on the zero-lift wave drag, the linearized-theory value of the

zero-lift wave drag of a slender body of revolution with S'(Z) = O is

identical to that given by slender-body theory. The body fineness ratio

required in order to justify neglecting the effect of _ on the body

area distribution has been discussed in reference 4.

Approximations

Aside from the approximations basic to linearized and slender-body

theories, only one approximation is necessary in order to express equa-

tions (3) and (5) in a finite series. This is an approximation of the

second derivative of area distribution_ S"(x), I of the equivalent bodies

of revolution.

iThe variables _ and e have been intentionally omitted from the

notation in the interest of simplicity and will be omitted throughout this

report except in cases where these variables are necessary to the analysis.

For bodies of revolution S"(x) = S"(x,_). If the body is closed at the

rear, Z is constant, and if the body has a finite base, Z = Z(_). For

wings and tail surfaces S"(x) = S"(x,_,8) and _ = Z(_,@).
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Let S"(x) be approximated by constant values over small equal

intervals; that is, a smooth curve is represented by a broken curve con-

sisting of adjacent equal-length steps as shown in figure i. The value

of the second derivative of the area distribution at a given station_ x,

is considered to be approximately equal to the value at the beginning of

the interval, station xi, in which station x lies. This approximation

can be expressed analytically as

s"(x) = s"(xi) for xi ! x ! xi+_

If the difference between the values of the second derivative of the

area distribution at two adjacent intervals is defined at the beginning

of the right-hand interval as

 s"(xi)=

then S"(x) can be approximated by

i(x)

>i _S"(xi) for x i ! x ! xi+1 (6)S" (x)

i= I

where the upper limit of summation defines the beginning of the interval

in which station x lies. It should be noted that I points are employed

to define I-i intervals for the total length (see fig. i).

Development of the Method

The present method for calculating zero-lift wave drag is developed

from analyses which evaluate equations (3) and (5) in light of the approxi-

mation of S"(x) described above. 2 All analyses in this section of the

report will be made in physical or dimensional coordinates. Experience

has shown, however, that in performing the actual drag calculations it is

more convenient to use dimensionless coordinates. For this reason, pro-

cedures are given in appendix A for making various types of configurations
dimensionless.

Single bodies of revolution, S'(-ZI) = O, S'(Z) # 0.- The general

expression for the zero-lift wave drag of a slender pointed body of revo-

lution is given by equation (5). It is convenient to write equation (5)
as

2During the preparation of the present report a numerical method for

calculating the zero-lift wave drag of bodies of revolution by electronic

machines or desk calculators was published in reference 6. Application of

the method of this reference also requires a knowledge of S"(x) (exact or

approximate) and may also be used to evaluate equations (3) and (5).



D = DI+D2

where

f Z_ ZS,'DI = - --q (xl)S"(x2)_nlxl-x21dxldx2
2_ _ i -_i

(7)

and

Zn -- + -- (xm)ZnlZ-x21d x (8)

First consider the expression for DI. Equation (7) can be written

D_ = 27 s"(x_)F(x2)_2 (9)
- 1

where

F(x2) = _S"(x_)tnlxz-x2[dxz
-ZI

(zo)

Using the form of equation (6) for the variable xl and using the fact

that S"(x) is approximated by a constant over each interval of the

distribution (see fig. i), one can write equation (i0) as

I

F(x2)--ffkS"(xi) _ Z Znlxl-X21dXl

i= i _X l=Xi

and equation (9) becomes

I

D1 =" "_'q ZZ_S"(xi)f_zS"(xm)f'2_ _nJxl'xm'd'x"dx2
i =l " Xl=Xi

(li)

Similarly, using the form of equation (6) for the variable x2, one can

write equation (ii) as

I I Z Z

DI _ 2_q f fZ_"(xi)z_"(xJ)_x 2 _x]. _ n'xl-x2'dxldx2 (12)
i=i j=l =Xj =x



i0

After the double integration, equation (12) becomes

I I

D1 ~~- 4-_q Z Z f_''(xi)_''(xj)l°(xi'xj)
i=i j=z

where

Io(Xi,X j) = (Z-xi) 2 <ZnlZ-xil - _) + (Z-xj)2 <ZnlZ-xjl

)2<znLxi_xji 3)(xi-x j

(13)

(14)

The order of the summation in equation (13) can be interchanged. This

permits parts of equation (14) to be evaluated as constants. Hence, if

the contribution to equation (13) of the first term in equation (14) is

summed over i, the contribution of the second term of equation (14) is

summed over j and the contribution of the second part of the third term

of equation (14) is summed over both i and j, equation (13) can be written

I I I I ]

Z Y, ZX )Dz = - Kl AS"(xj)+K2 Z_S"(xi)+Ks- Z_S"(xi)Z_S"(xj)II(xi,x j )

j=l i=l i=z j=1

(15)where

I

K1 = _fkS"(xi)(Z-xi) 2 <ZnlZ-xil- 3)

i=l

I

j=z

(16)

I I

Ks = 3 _, _,z_S,,(xi)z_,,(xj)(xi_xj)2

i=l j=l

and

Iz(xi,xj) = (xi-xj) 2Znlxi-xjl (17)

Now consider the expression for D2 given by equation (8). Using

the form of equation (6) for the variable x 2 and the fact that S"(x)

is approximated by a constant over each interval of the distribution,

one can write the second term of equation (8) as



Ii

G(x2)-
f_is s'(_)

S' (_) "(x2)Zn IZ-x2 Idx2 ~

I

j=_ xj (18)

After the integration, equation (18) becomes

Again, since

the distribution, it can be shown that

I

,_"(xj)(z-xj) -- s'(z)

j=l

and equation (19) becomes

I

S'(_)

/,
j=z

I

G(x2) S'(Z)_ _AS.,(xj)[(Z_xj)(Znl__xjl_l)] (19)

j:1

S"(x) is approximated by a constant over each interval of

(20)

[s,(z)]_ (21)

where

J(xj) = ( -xj) nl -xal

Substituting equation (21) in equation (8)

q{l [S,(Z)]2 [ 2D2 = 7 _n DR(Z)

I

2] + S'(Z)_LkZ"(xj)J(xj)}

j=z

(22)

(23)

Finally, the zero-lift wave drag of a slender pointed body of revolution

with finite base area, such that S'(Z) { O, is given by the sum of

equations (15) and (23) as

+q as"(_j)+K2 as"(xi)+K3- m"(

u_ j:l i:i i=z j:1
xi)_S"(xj)11(xi,xj_

I I < 12 2 + s'(_) as"
q_ [S'(Z)] 2 7,n i3R(7.) (xj)J(xj) (24)

j=].

where Kz, K2_ Ks_ and Iz(xi,xj) are given by equations (16) and (17),

respectively, and J(xj) is given by equation (22).
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Single bodies of revolution, S'(-Z1) = S'(Z) = 0.- For a slender

body of revolution pointed at both ends or with finite base area such that

S'(Z) = 0 the last two terms of equation (24) become identically zero and

the zero-lift wave drag of such bodies of revolution is given by equa-

tion (15). Equation (15) can be simplified for S'(Z) = 0. For this

condition, it can be seen from figure i (since S"(x) is constant over

each interval, S' (x) is linear over each interval) that

I I

_AS"(xi) = fZhS"(xj)= 0 for S'(_)= 0 (25)

i=i j=l

Hence, the first two terms of equation (15) vanish. Further, upon

substitution of equation (25) in equation (20) it is easily determined
that

I I

>i_S"(xi)xi = >._"(xj)xj = 0 for S'(_) = 0 (26)

i=l j=l

With equations (25) and (26) it can be further determined from equa-

tion (16) that Ks is identically zero. Hence, for S'(Z) = O,

equation (15) becomes

I I

! _ _S"(xi)hS"(xj)ll(xi,xj ) (27)DI = 4_

i=i j=l

Finally it should be noted that ll(xi,x.) = 0 for i = j (see eq. (17))
and in view of symmetry of the matrix of Jthe double summation with respect

to i and j for a single body of revolution the zero-lift wave drag of

equation (27) can be expressed as

I i-i

Di s 2_ _ _S"(xi)ZkS"(xj)Ii(xi'xj) (28)

i=e j=l

Multiple-component configurations.- For configurations whose

equivalent bodies of revolution satisfy the end conditions given by

equation (4), the zero-lift wave drag of each equivalent body of revolu-

tion is given by equation (28). The zero-lift wave drag of the given

configuration is determined by use of the results of equation (28) for

each equivalent body of revolution in equation (i). If the end conditions

of equation (4) are not satisfied, the results of equation (15) for each

equivalent body of revolution (obtained from actual oblique areas) must

be used in equation (i). It should be noted that equation (24) cannot

be applied to calculate the total zero-lift wave drag of multiple-

component configurations, since this equation is valid only for isolated

bodies of revolution for which S'(Z) _ O.
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An analysis of the integral equation for a single equivalent body

of revolution (eq. (3)) reveals that the total zero-lift wave drag of an

equivalent body of revolution of a multiple-component configuration can

be calculated as the sum of the zero-lift wave drag of each component

alone plus the zero-lift interference wave drag between all possible pairs

of components. For simplicity consider the complete wing shown by the

solid lines in sketch (b). Each

wing panel is considered to be one

component of a multiple-component

configuration. The dashed lines

in sketch (b) represent the

"sheared" configuration (described

in ref. 7 for a given _ and 8)

whose normal area distribution is

that of the equivalent body of

revolution. From sketch (b) the

total second derivative of the

combined area distribution of the

two wing panels (i.e._ the equiva-

lent body of revolution) is

Sheored wing

for 0 _£ 8 (-_- _ _-- Bos_c wing and

_ _ I-- _ sheored wing for

\ H .

i ii x

-x b- -C._-,.. 0 C. _. Xo Ao

:\-..

Sketch (b)

sT"(x): sf'(x)+Sf'(x)

and the total zero-lift wave drag of the equivalent body of revolution

is given by

DT q [SE" (x i)+SH" (x i)][SE" (x2 )+S H''(x2 )]Zn Jx 1 -x2 1dxldx2

" - b (29)

Expanding the integrand of equation (29) yields

DT =

xa Xa

2_
- b -Xb

SH" (x I )SH" (x2)Zn Jxl-x2 Idxldx2-

2_ J_Xb b

q Xa SE,,(xl) SH,,(x2) Zn ix1_x2 idxldx 2

-b b

(30)

The first two terms of equation (30) represent the zero-lift wave drag

alone of each component (wing panels E and H, respectively) of the equiv-

alent body of revolution of the complete wing. The last term represents



14

the mutual zero-lift interference wave drag between the components of the

equivalent body of revolution. Equations (29) and (30) indicate that the

analysis is performed over the total length of the sheared configuration.

Since the second derivative of the area distribution of each sheared wing

panel (sketch (b)) is zero over some portion of the total length,

equation (30) can obviously be written

DT = _ _q FXalXa
2_ dc o Co

2 2

Co Co

(x )sf'(x2)znIx -x2
b -b

Co

q f_-- f xa SE,, SH"

 J_xb (31)

Equation (31) indicates that the analysis is performed over the individual

lengths of each component of the sheared configuration. The analytical

solutions of equations (30) and (31) yield identical results; however,

as will be subsequently demonstrated, the approximate solutions of these

two equations may differ.

For convenience, the first term of equations (30) and (31) will be

designated as DEE , the second term as D}{H, and the last term as DEH.

In the notation of the finite series form developed above, the approximate

expressions for DEE , DHH , and DEH are, for an analysis performed over

the individual length of each equivalent-body component (eq. (31))

IE i-l

DEE _ 2_ Z ZASE"(XEi)ASE"(XEj)II(XEi'XEj ) (32)

i=2 j=l

IH i-i

q
DHH -" _ Z ZZ_SH"(XHi)f_SH"(XHj)II(XHi'XHj )

i=2 j=l

(33)

IE IH

"DEH = 2--_ f_SE (xEi)ASH ''(xHj ) I 1 (XEi, XHj )

i=l j=l

(34)

For an analysis performed over the total length of the equivalent body

of revolution, equations (32) to (34) are applicable when the subscript
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of the upper limit of summation is dropped and ! represents the number

of points used to divide the total length into equal intervals. Finally,

the total zero-lift wave drag of the given configuration is, in accordance

with equation (i),

ifo2 ifo2 = DES(13,e)de+  (13,e)de + D H(p,e)de

(35)

Extending this procedure to configurations with more than two components

the total zero-lift wave drag can obviously be calculated as the sum of

the zero-lift wave drag of each component alone plus the mutual zero-lift

interference wave drag between all possible pairs of components. On the

other hand, if each equivalent body of revolution is treated as a single

entity and its total zero-lift wave drag is calculated by equation (29),

the total zero-lift wave drag of the given configuration is written in

the form of equation (i) as

ifDT(P) = _ DT(P,8)d8 (36)
o

Generally speaking, for a given p, the averaging process of

equations (35) and (36) is performed graphically because the area distri-

butions of the components of the equivalent bodies of revolution change

with 8. The term "averaging process" implies integration with respect

to 8 and division of this result by 2_. In the special case of systems

of slender bodies of revolution, whose individual-component area distri-

butions do not change with 8, it is expedient to calculate the total

zero-lift wave drag by equation (35) for an individual-length analysis.

For this case the zero-lift wave drag of each component alone is calculated

directly without recourse to averaging since the area distributions of

all equivalent bodies of revolution for each component alone are identical.

The interference wave drag between pairs of bodies, on the other hand,

must be averaged, as the total area distributions of the equivalent bodies

of revolution for pairs of components do change with 8. As a result of

the present method for calculating zero-lift wave drag, it is possible,

in this special case, to perform the averaging process analytically in

closed form.

Interference between a pair of bodies of revolution, S'(-Zz)=S'(Z)=0.-

Consider the general arrangement of a pair of bodies of revolution, E

and H, whose centers are longitudinally separated by a distance 5 and

whose axes are laterally separated by a distance d as shown in figure 2.

Let each of the bodies satisfy the condition of equation (4), and let each

body be sufficiently slender that the frontal projection of the area dis-

tribution formed from each body by the oblique planes can be considered

to be the same as the normal cross-sectional area distribution of each
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body (i.e., independent of 6). The zero-lift interference wave drag

between bodies E and H is given by the last term of equation (35).

Preparatory to developing this term in finite series form, consider the

area distribution of the equivalent bodies of revolution for the

configuration of figure 2.

The area distribution (and all derivatives thereof) of each equivalent

body of revolution of the configuration shown in figure 2 can be found in

terms of sheared configurations in a manner similar to that employed in

reference 7; that is, the area distribution of each equivalent body of

revolution can be determined as the normal cross-sectional area distribu-

tion of a properly sheared configuration. For a specified _ and 8,

consider the trace in the xy plane of the oblique plane which passes

through the center of body H (see fig. 2). Using the coordinate system

of body E, the area distribution of the equivalent body of revolution at

XEl would consist of the frontal projection of the area of body E at

XE1 plus the frontal projection of the area of body H at xH = O. Within

the slenderness requirements of the theory, this projected area is the

same as the normal cross-sectional area of a configuration consisting of

body E and of body H shown by the dashed lines in figure 2. In other

words, body H is sheared a distance I_d cos 81 rearward for 0 _ 8 < _/2

and forward for _/2 < 8 ! _. The total area distribution of the equiva-

lent body of revolution consists of the sum of the normal cross-sectional

area distribution of body E plus that of body H properly translated.

Since the effect of 8 on the area distribution of the equivalent bodies

of revolution is merely the translation or shearing of one of the original

bodies, the second derivative of the area distribution of body H can be

determined relative to the coordinate system of body H and related to

the coordinate system of body E by the transformation (see fig. 2)

XH(E) = XH+5+_d cos 8

When equations (34) and (37) are combined, the last term of

equation (35) becomes

1 r

(37)

IE IH 1
  sE"(xEi)  "(x j)I ExEi,xH(E)jIdO

i=l j=l

(38)

where from equations (17) and (37)

ll(XEj,XH(E) j) = ll[XEi,XH(E)j,_d,8]

: (XEi-XHj-5-_d cos 8)2tnlxEI i -xHj-5-_d cos 8 1

To simplify the notation, equation (39) is written

(39)
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12(aij,_d,8 ) = (aij-_d cos 8)2Znlaij-_d cos 81 (4o)

where

= IxEi-(x j+ )I (41)aij

For both bodies Z_S"(x) is independent of 8 and it can be determined

with the aid of figure 2 that the sheared configurations are symmetrical

for 0 ! 8 _ n and n ! 8 _ 2n; therefore equation (38) can be written

IE IH

DEH(_d) = 2_ _ _ASE"(XEi)Z_SH"(XH_)I(aij,_d)j (42)

i=l j=l

where

l(aij,_d ) = I2(aij,_d,8)d8

o

A detailed evaluation of equation (43) is given in closed form in

appendix B in terms of the dimensionless coordinates described in

appendix A.

(43)

Equation (42) is also applicable to nonlifting slender bodies of

revolution whose equivalent-body area distributions are not considered

identical to the normal cross-sectional area distribution of the body,

but are dependent upon _. For these cases l(aij,_d) of equation (42)

is unchanged but _S'|(X) must be replaced by AS"(x,_) where AS"(x,_) is

obtained for each body from the second derivative of the frontal projection

of the area distribution formed from each body by the oblique planes.

The importance of equation (42) is that for each _d it yields the

zero-lift interference wave drag between a pair of bodies of revolution

from a single set of calculations by an electronic computing machine

(punch cards). Thus, with tabulated values of equation (43), a single

set of calculations evaluates each term of equation (35). On the other

hand, to evaluate equation (36) a separate set of calculations for each

value of 8 and an integration are required. Consequently, it is imme-

diately apparent that the total zero-lift wave drag of a system of slender

bodies of revolutions can he calculated more rapidly and more accurately

if the system is subdivided into components and an individual-length

analysis is used.

Equation (42) is valid for all Z, d, and 5 greater than or equal

to zero. Several interesting results are indicated by equation (42) when

combinations of these variables are zero. If _ and/or d equals zero

the averaging process is automatically eliminated (see eqs. (40) and (43)).

In this case equation (42) yields the same result as equation (34). In
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particular, if _d = 0 by virtue of the fact that d = 0 the body axes

are coincident and for this condition equation (42) is applicable to each

pair of components of the equivalent bodies of revolution of airplane-type

configurations. For the very special case of two identical bodies of

revolution arranged so that d = 5 = O, the result of equation (42), for

any _ _ O, is exactly twice that of equation (27); that is, the zero-

lift interference wave drag, at any supersonic _ch number, between a

pair of identical bodies of revolution whose axes are superimposed is

twice the zero-lift wave drag of either body alone. A bar over the sub-

scripts denote pairs of bodies of revolution which satisfy these

conditions; thus

bs-£( ) = 2Ds-£() = ) (44)

Equation (44) is also valid for a pair of identical bodies of revolution

which satisfy the conditions _ = $ = 0 and d _ O, and for the equivalent

bodies of revolution of a complete wing for _ _ 0 and 8 = _/2 (see

sketch (b)). The latter result is immediately obvious from equation (31),

since, for e = x/2, SE"(x ) = SH"(x), -x b = -Co/2 , and x a = x o.

Interference between a pair of bodies of revolution,

S'(-Z±) = O, S'(_) _ 0.- It may seem logical that the same procedure

employed above for a pair of bodies of revolution with S'(-Zz)=S'(Z)=O

can be used to develop a zero-lift interference wave-drag equation for a

pair of bodies of revolution with S'(-_z) = 0 and S'(_) _ 0 merely by

using equation (37) to evaluate J(xj) of equation (24) in analytical
form for all 0 _ 8 _ _. Unfortunately_ this is not the case. It will

be recalled that equation (24) was developed from slender-body theory

for an isolated body of revolution. However, a zero-lift interference

wave-drag equation for bodies of revolution with these end conditions

can be developed by using equation (37) and the proper limits of integra-

tion for each body in equation (7). Following the same analysis as that

used for equation (7), an equation similar to equation (15) will evolve.

The new expressions for K1, K2_ and Ks will be a function of ZE, ZH,

xi, xj, _d, $_ and cos 8. The last term will be identical to the unaver-
aged expression of equation (38). Each term of the new equation can be

averaged analytically in closed form. The averaged expression for the

last term of the new equation will, of course, be given by equation (42).

It is to be emphasized that for bodies of revolution with S'(-_z) = 0

and S'(Z) _ 0 it is mandatory to use the second derivative of the fron-

tal projection of the area distribution formed from each body by the

oblique planes.

Procedure for Applying the Method

Zero-lift wave drag.- Application of the equations developed above

depends upon the geometry of the configuration being considered. The

equations of this report to be used to calculate the zero-lift wave drag
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of each component of an equivalent body of revolution and the zero-lift

interference wave drag between pairs of components of an equivalent body

are summarized in table I for several configurations together with the

averaging process generally required to obtain the zero-lift wave drag

of the given configuration.

As a result of the basic approximation of S"(x) each of the

equations listed in table ! is easily adapted to electronic-machine com-

puting techniques, in particular, to punch-card computing machines.

Values of ll(xi,xj) of equation (28) and of 12(XEi,XHj) of equation (34)

can be obtained from values of l(aij,_d ) of equation (42) for _d = O.

Hence, if the present method is to be adopted, cards for the values of

l(aij,_d ) can be punched for many values of the arguments and permanently
stored for reuse with values of f_S"(x) of a particular configuration to

be analyzed. This accomplished, the problem of the application of the

present method resolves itself into the question of how the values of

AS"(x) at the points which divide S"(x) into equal intervals are to be

recorded on punch cards. Generally it will not be possible, or even

feasible, to calculate f_S"(x) at each of these points. Therefore, the

procedure employed is to record the values of S"(x) on a set of punch

cards with the aid of an electronic machine called a telereader; that is,

one can determine S"(x) at the desired points from a plot of S"(x) vs. x.

Then, as noted earlier,

as"(xi) =

This procedure has been found to yield numerical solutions of the

zero-lift wave-drag equations in very good agreement with analytical

solutions of equation (3) for configurations with no singular points in

S"(x). When singularities occur in S"(x), the telereader yields values

of S"(x) in the region of the singular points which are subject to

errors. These errors have been found to have a predominant influence on

the calculated wave-drag results when singularities occur at the ends of

the distribution. When singular points in S"(x) occur in the inboard

region of the distribution these errors have been found to have only a

small effect on the accuracy of the calculations. In order to circmnvent

the detrimental effect of singularities at the ends of S"(x), it was

reasoned that, since S"(x) was approximated by constant values over equal

intervals, S'(x) is linearly approximated over these intervals and could

be determined by the telereader from plots of a continuous variation of

S'(x) vs. x. Then it becomes a simple matter to define a mean value of
the second derivative of the area distribution as

i)
Sm"(x ) = xi+l-xi for xi ! x _ xi+ l (45)

from which _Sm"(x ) is easily obtained. The results of many calculations,

not presented here in the interest of brevity, demonstrate that the use
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of Sm"(X) rather than S"(x) yields zero-lift wave-drag results which
are invariably more accurate for distributions with singularities. The
use of Sm"(X) rather than S"(x) for distributions with no singularities
reduces the accuracy of the calculations by less than one tenth of a
percent. Consequently, it is recommendedthat Sm"(x) always be used in
the present method. All calculations of this report madeby the present
method have employed Sm"(x).

A final point of procedure in applying the present method concerns
the arbitrary choice of the numberof points selected to divide the second
derivative of the area distribution into equal intervals. Obviously, the
numberof points selected will affect the accuracy of the zero-lift wave-
drag calculations in a manner similar to that which the choice of the
numberof terms of the infinite series affects the accuracy of the results
obtained by the method of references 2 or 3. It has been found in the
present analysis and in reference 3 that 201 points (200 equal intervals)
is a practical limit for which punch-card computing machines should be
programed. The results of manycalculations indicate that in somespecial
cases as few as i01 points, or even less, yield zero-lift wave-drag results
with acceptable accuracy. However_the most accurate results have been
found to be consistently obtained with 201 points. Consequently, all
calculations used to evaluate the present method have employed 201 points.
The results of a special detailed analysis of the effect of the choice of
the numberand the location of equally spaced points on the zero-lift wave
drag of one configuration are presented in the next section of this report.

The development of the present method for calculating zero-lift wave
drag and the outline of the procedure for applying the methodhave merely
presumed that the second derivative of the area distribution (S"(x) or
Sm"(x)) is available for all componentsof all equivalent bodies of revo-
lution of a configuration. The actual determination of these distributions
is probably the greatest task required in order to perform zero-lift wave-
drag calculations by the present method. An analytical procedure for
computing S(x) for wings and tail surfaces is available in reference 7
and has been expandedin reference 8 for wings (with arbitrary thickness
distributions) in the presence of bodies. A method for finding S(x)
and S'(x) (from which Sm"(x) is obtained) is given in reference 4 for
bodies of revolution and wing and tail-surface componentsof equivalent
bodies. Becausethe area distribution of wing and tail-surface components
of equivalent bodies of revolution changeswith _ and 8, and because the
airfoil-section thickness distribution is not generally available in
analytical form, the graphical method of reference 4 can becometedious.
The need for a more simplified method for finding S(x), S'(x), and even
S"(x) for wings and tail surfaces, obviously, exists. To satisfy this
need a simplified method has been developed for the analytical calculation
of S(x), S'(x), and S"(x). The formulation of analytical expressions
for these distributions obviously depends upon an analytical expression
for the plan-form thickness distribution. Analytical approximations of
the airfoil-section thickness distribution as well as the complete
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plan-form thickness distribution are given in appendix C. The analytical
expressions are given in terms of a single parameter which identifies
each of the sheared configuration plan forms described in references 7
and 8. This single parameter combines the dependenceof the sheared plan
forms upon both B and 8. The analytical method for calculating S(x),
S'(x), and S"(x) is presented in appendix D.

Wave drag.- The general form of equation (15) can be employed to

calculate the linear-theory wave drag for planar and nonplanar lifting

configurations when, in addition to the second derivative of the area

distribution, the force term of equation (2) is known. When the force

term is also known the second derivative of the area distribution of

each equivalent body of revolution is represented by the combined term

- T,
2q

and for a specified _ and 8 equation (2) has bhe same form as

equation (3). Hence in equation (15) one merely replaces Z_S"(x) by

If it is desirable to separate the effects of thickness and lift on the

wave drag, equation (2) can be expanded by multiplying out the integrand.

This manipulation yields three terms for the wave drag of each equivalent

body. Two of the terms, identical or similar in form to equation (3),

represent the separate contributions to the wave drag of thickness and

lift and can be evaluated using the form of equation (15). The third

term, similar in form to the last term of equations (30) and (31), repre-

sents the interference wave drag between thickness and lift and can be

evaluated using the form of equation (42) with values of l(aij,_d ) for

_d = O. In general, L'(x,_,8) is difficult to obtain; however, a review

of the literature revealed that reference 9 provides a systematic method

for computing wing pressure distributions for wings with subsonic leading

edges and supersonic trailing edges. From this information it is possible

to obtain L(x,_,8) and L'(x,_,e). A procedure for finding these quan-

tities in terms of the lift distribution of sheared wings is briefly

outlined in appendix E for wings with zero taper ratio.

Vortex drag.- The general form of equation (15) can also be used to

calculate the vortex drag of a finite-span wing. The familiar form of the

equation for the vortex drag is

b b

F' (yz)F' (y2)tn IYl-Y2 idyzdy2 (46)DV = 4_ d b
2 2
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where P is the free-stream density and F'(y) is the slope of the

spanwise circulation distribution. Equation (46) is identical in form

to equation (7). By means of the same approximation of F'(y) as was

used for S"(x), the vortex drag can be calculated by equation (15) with

q, Z_S"(x), x, and _ replaced by 0/2, 2_r'(y), y, and b/2, respectively.

EVALUATION OF THE METHOD

'l_nemethod will be evaluated by calculating the zero-lift wave drag

of several bodies of revolution and comparing the results with those

obtained by analytical solutions (when available) and by the method of

reference 3. The calculations are restricted to Mach number i in order

to avoid the integration required of the method of reference 3 at Mach

numbers greater than i. Subsequently, the merits of the present method

for Mach numbers greater than i will be briefly examined. The two basic

arrangements of the bodies considered in the evaluation are presented in

figure 3. As shown in figures 3(a) and 3(b) the body centers are separated

longitudinally a distance 6 = 0 (5 = O) and 6 = 2Z (5 = 2), respectively.

For these arrangements the wave-drag analysis is performed over the total

lengths 2Z and 4Z, respectively. For the arrangement of bodies with

$ = 0 the wave-drag analysis is also performed over the alternate length

4Z as indicated in figure 3(c). Equations defining the dimensionless

area distribution of the bodies used in these arrangements are given below:

Body Equation of area distribution

1 $I(_) : _ (1-_2) sj2 (47)

2 _2(_) = _ (l-_2)5j2 (48)

64 v/2
3 Ss(_) : _ (1-_ e) (49)

4 $4(_) - 128 (l__e) 9/2 (50)
63

5 ss(_) = _ _(1-_2)s/2 (51)

6 _6(_) : _ _(l-_2) 5/2 (52)

7 $7(_) = 3_ _(1"_2)7/2 (53)

8 ss(_) : 12_...A8_(l__2)9/2 (54)
63

For each body -i _ _ _ i. Equations (47) to (50) are even functions with

the coefficients so chosen that the dimensionless value of the volume of

each body is _/2. Equations (51) to (54) are odd functions corresponding
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to bodies i to 4, respectively, and the volume of each of the bodies 5

to 8 is obviously zero. It should be noted that bodies i and 5 have

singularities in S"(_) at both ends (i.e., at _ = -i and _ = I).

Comparisons will be made of the total zero-lift wave drag for

several pairs of bodies, the separate contribution of each body alone to

the total, and the separate contribution of the interference between

bodies. The interference drag results will be considered first, since,

as discussed in the METHOD section and amplified in the following para-

graphs, these results provide information from which calculations can be

made of both the total wave drag of a pair of bodies and the contribution

of each body to the total. Before presenting the results of the calcula-

tions it is desirable to mention the specific computing procedures

employed for the bodies considered herein. These specific computing pro-

cedures were employed in order to obtain consistently the most accurate

results by each method.

Only the zero-lift interference wave drag was calculated by an

electronic computing machine for both the present method and the method

of reference 3. Values of S(_) and Sm"(_) were calculated at each of

the 201 points from equations (47) to (54). The existing machine-

computing program at Ames Research Center for the method of reference 3

yields directly, for a given value of _ cos 8 and up to 49 terms, only

the total zero-lift wave-drag results based on an analysis performed

over the total length of a configuration. However_ interference drag

results were obtained by a special manipulation of the data obtained from

the existing program. This manipulation is described in appendix F which

presents the computing procedure used in this report for the method of

reference 3.

Four significant figures were retained for all machine-computed

calculations of the interference drag results for both methods. For the

configurations of figure 3(b) with singularities in S"(_) at the ends

of at least one body, only two significant figures were possible in the

case of the present method. This loss of significant figures is a direct

result of the large values of Sm"(_) at and near the ends of the body.

The total zero-lift wave drag of a pair of bodies of revolution is

given by the sum of the contribution to the total of each body alone and

the interference between bodies (see eq. (35)). The body-alone contri-

bution can be determined from the interference results in accordance with

equation (44). Hence, by combining equations (35) and (44) the following

equations can be written for the dimensionless total zero-lift wave drag:

i ~ i (55)

for the configurations of figure 3(a),
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1 i ) (56)(c)+5

for a total-length analysis of the bodies in figure 3(b), and

1 1
= [ _-_(a) + [ _(a)+_H(b ) (57)

for an individual-length analysis of the bodies in figure 3(b). In

equations (55) to (57) the terms in parentheses designate that part of

figure 3 which indicates the configuration length over which the wave-

drag analysis is performed.

Accuracy of Calculations for Interference

The dimensionless zero-lift interference wave drag for the bodies

in the arrangements of figure 3 is presented in table II. Rough sketches

of figures 3(a), 3(b), and 3(c) are duplicated in the column headings to

indicate the arrangement of the bodies and the length over which the wave-

drag analysis is performed. In column i of table II are tabulated all

possible combinations of pairs of bodies whose area distributions are

defined by equations (47) to (54). Note that the bodies with singularities

in S"(_) at the ends are marked with an asterisk. Columns 2 and 3 of

table II list the analytical values of the wave drag. For _ = 2 the

analytical solution of the last term of equation (31) for nonidentical

bodies has not, as yet, been obtained; therefore_ analytical solutions

for only identical pairs of bodies are presented in column 3. However_
it is felt that the pairs of identical bodies with _ : 2 are sufficient

to evaluate the accuracy of the present method for calculating zero-lift

wave drag.

Bodies with _ = 0.- For all pairs of bodies in the arrangement of

figure 3(a) for which data are available both methods yield zero-lift

interference wave-drag solutions which are accurate to within a fraction

of i percent of the analytical solutions (compare columns 2, 4, and 7 of

table II). For configurations with no singularities or discontinuities

in S"(_) the method of reference 3 yields exactly the analytical solu-

tions. The data of columns 5 and 8 of table II are included merely as

data from which the body-alone contribution to the total zero-lift wave

drag can be obtained for configurations of figure 3(b) which are analyzed

over the total length of the configurations. It will be noted that ana-

lytical solutions for configurations of figures 3(a) and 3(c) are identical

(see column 2 of table II); whereas, the numerical solutions by both

methods are less accurate for the configurations of figure 3(c).

Bodies with _ : 2.- For all pairs of bodies in the arrangement of

figure 3(b) for which data are available both methods yield zerc-lift
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interference wave-drag solutions which are accurate to within a fraction

of i percent of the analytical solutions for pairs of bodies with no

singularities or discontinuities in S"(_) (compare columns 3, 6, and 9

of table II). For pairs of bodies, at least one of which has singularities

in S"(_) at the ends, the method of reference 3 and the present method

yield zero-lift interference wave-drag solutions which are accurate to

within -8 and +14 percent of the analytical solutions, respectively.

However, these figures are percentages of small values of the interference.

Furthermore, it should be recalled that with the use of the existing

machine-computing program the results for these bodies by the present

method are based on only two significant figures. Bodies i and 5, for

which calculations by the present method are in greatest error, are bodies

with singularities at the ends which have minimum zero-lift wave drag at

transonic speeds for a given volume and length and a given first moment

of area, respectively. For these reasons an evaluation of the accuracy

of the zero-lift wave-drag results computed by the present method for

these bodies should constitute the most severe test of the method.

Accuracy of Calculations for Body Alone

In view of the simple relationship given by equation (44) between

the zero-lift wave drag for a body alone and the interference between a

pair of identical bodies with _ = O_ body-alone results have not been

tabulated. It is obvious, however, that both methods yield numerical

solutions for the body-alone zero-lift wave drag which are accurate to

within a fraction of i percent of the analytical solutions.

Accuracy of Calculations for Total Configurations

The dimensionless total zero-lift wave-drag results for only pairs

of identical bodies in both basic arrangements of figure 3 have been cal-

culated using the data of table II in equations (55) to (57) and are

presented in table Ill_ These pairs of bodies are considered sufficient

to evaluate the accuracy of total zero-lift wave-drag calculations by the

present method in that these bodies represent the extreme deviations from

the analytical solutions and are generally typical of all the pairs of

bodies in their demonstration of the effect of the different lengths used

in the analysis. The data in parentheses in table III indicate the percent

deviation from the analytical solutions.

Bodies with 8 = 0.- Since the total zero-lift wave drag for these

bodies was obtained from t_e zero-lift interference wave drag of these

bodies, it is clear that the accuracy of the total wave-drag results for

these bodies is consistent with that of the interference wave-drag results;

that is_ for all pairs of bodies in table III both methods yield total
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zero-lift wave-drag solutions which are accurate to within a fraction

of i percent of the analytical solutions (compare columns 2, 4, and 5 of

table Iii). For configurations with no singularities or discontinuities

in S"(_) at the ends, the method of reference 3 yields exactly the

analytical solutions.

Bodies with _ = 2.- Total zero-lift wave drag for these bodies can

be calculated from an individual- or a total-length analysis. As noted

in the METHOD section and demonstrated in column 3 of table !II, the

configuration length used in the analysis does not influence the analyti-

cal solutions. The length does, however, affect the numerical solutions.

The effect is small for the simple bodies of revolution of this report,

even for bodies with singularities at the ends of S"(_) (see table III).

Preliminary calculations for a more general airplane-type configuration

indicate, however, that the influence of the length may not be small for

such configurations in that S"(_) of the sheared wings of many equivalent

bodies is discontinuous. Therefore, the authors feel that some discussion

of the length is warranted for the present configurations even though, in

this case, the effect is small.

For pairs of bodies with no singularities or discontinuities in

S"(_) both methods yield results which are accurate to within one third

of i percent of the analytical solutions regardless of the length of

analysis (compare columns 3, 7, and 9 for the present method and col_mus 3,

6, and 8 for the method of ref. 3). Even though the deviations from the

analytical solutions are very small for each length of analysis, a defi-

nite trend toward more accurate solutions for the individual-length anal-

ysis is evidenced by the results for these bodies. For pairs of bodies

with singularities in S"(_) at the ends (bodies ixl and 5×5) both methods

yield results which are accurate to within ±3 percent of the analytical

solutions. The same trend toward more accurate solutions for the

individual-length analysis is evidenced by the results for these latter

bodies for the method of reference 3 but not, however, for the present

method. In spite of these seemingly anomalous results for the present

method, and even though the effect of length of analysis is small, the

data of table III indicate that both methods yield comparable total zero-

lift wave-drag solutions which are in closer agreement with analytical

solutions when the wave-drag analysis is performed over the individual

lengths of the bodies.

Bodies with 0 < _ < 2 and _ > 2.- The total zero-lift wave-drag

calculations at Mach number i (or at any supersonic Mach number) for

pairs of bodies arranged with these values of _ will be more accurate

than those discussed above for _ = 2 if the wave-drag analysis is always

based on an individual-length analysis. The body-alone contribution to

the total zero-lift wave drag is, of course, independent of _; but both

the accuracy and magnitude of the interference contribution are affected

by _. As _ becomes less than 2, the interference calculations become

more accurate as a result of a larger number of points of the 201-point
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analysis lying on each body. As the value of _ increases beyond 2, the

interference calculations are subject to greater inaccuracies, yet the

magnitude of this portion of the wave drag diminishes to an almost

negligibly small percentage of the total zero-lift wave drag.

Accuracy of Calculations at Mach Numbers Greater

Than i for Total Configurations

A complete evaluation of the present method as a tool for calculating

total zero-lift wave drag (eq. (35)) should include an evaluation of the

accuracy of the method at Mach numbers greater than i for the configura-

tions of this report as well as the more general airplane-type configura-

tions. No quantitative evaluation of this aspect of the accuracy will be

made; however, from the information available in this and the previous

section of this report it is possible to make a qualitative evaluation.

Pairs of bodies of revolution.- The area distribution of each body

does not change with 8; therefore, the zero-lift wave drag of each body

alone is obtained, with comparable accuracy, from a single set of calcu-

lations by each method. The area distribution of the combined bodies of

each equivalent body of revolution does change with 8. For the method

of reference 3 the zero-lift interference wave drag between bodies must

be computed for several values of 8 and the results averaged as dis-

cussed relative to equations (35) and (36); whereas, for the present

method the zero-lift interference wave drag is obtained from a single set

of calculations, analytically averaged for all 8. As a result of the

averaging process required of the method of reference 3, it can be stated

that the present method yields the more direct and probably the more

accurate total zero-lift wave-drag results for systems of bodies of

revolution.

Airplane-type configurations.- The area distribution of the various

components of airplane-type configurations changes with 8. Hence_ for

these configurations both methods, in general, yield total zero-lift wave-

drag results with a comparable accuracy. If a particular configuration

contains several body-of-revolution components such as the airplane-type

configuration shown in table I, the present method will probably yield

more accurate results for the reasons mentioned above concerning the

zero-lift interference wave drag between bodies of revolution.

Computational Time Required

An evaluation of the computational time required by the present

method is equally as important to the complete evaluation of the method

as is an evaluation of the accuracy of the method. Just as the most
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accurate zero-lift wave-drag values obtainable by the present method and

the method of reference 3 were used to effect an equitable evaluation of

the relative accuracy of the methods, so it is desired to evaluate the

relative computational time for both methods on the basis of equitable

electronic-computing machine techniques. Accordingly_ this evaluation

will be based upon the following assumptions:

i. The zero-lift wave-drag equations for an equivalent body of

revolution for both methods are programed in such a manner to permit

calculations of the total zero-lift wave drag of multiple-component con-

figurations from separate calculations of the zero-lift wave drag of each

component alone plus the zero-lift interference wave drag between

components.

ii. The initial data for each method are obtained by a telereader

from a plot of S(_) or S'(_) vs. 5, as the case may be. It should be

recalled that values of Sm"(_) are calculated from values of S'(_)

according to equation (53), and this operation is assumed to be included

in the program.

iii. S(_) and S'(_) are obtained for wings and tail surfaces by an

analytical method similar to that presented in appendix D.

The present method and the method of reference 3 require the same

computing time to calculate the total zero-lift wave drag of any configu-

ration at Mach number i. If plots of the distributions are available,

calculations for one equivalent body of revolution require up to 1-1/2
hours from the beginning of the telereader operation to the final answer.

For configurations with components whose equivalent body area distributions

change with e, both methods require the same computational time because

the time required to calculate the total zero-lift wave drag of each

equivalent body is identical and the averaging process can be performed

similarly for both methods. For configurations consisting entirely of

body-of-revolution components, both methods require the same time to cal-

culate the zero-lift wave drag of each body alone. The present method,

however, affords a saving in time required to calculate the zero-lift

interference wave drag between pairs of bodies because the averaging

process cannot be performed similarly for both methods. The present

method inherently averages the interference contribution of all pairs of

equivalent bodies with a single set of calculations; whereas_ by the

method of reference 3, the averaging process must be performed for the

results of a finite number of pairs of equivalent bodies of revolution.

Consequently_ the saving in time is directly proportional to the number

of pairs of equivalent bodies (or values of 8) necessary to define the

integrand of the last term of equation (35). For example, for two bodies

of revolution (the minimum required for interference) a minimum of five

equivalent bodies is required. Hence, zero-lift interference wave-drag

calculations by the present method would only require 20 percent of the

computing time required of the method of reference 3, and the total
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zero-lift wave-drag calculations would require 60 percent of the computing

time required of the method of reference 3. If more than five equivalent

bodies were required, the saving in computing time would be even greater,

as would be the case for a system of more than two bodies of revolution.

Ultimate Capabilities of the Present Method

The analyses presented in this report have developed a numerical

method for calculating zero-lift wave drag which employs a knowledge of

the second derivative of the area distribution of a configuration and

which is easily adaptable to electronic-machine computing equipment. The

ultimate desire, however, is the development of a method for computing

zero-lift wave drag by ordinary desk computing techniques. As a result

of a detailed analysis of the effect of the choice of the number and the

location of the points used to divide Sm"(_) into equal intervals, such

a method appears possible for components of a configuration. Presented

in figure 4 are the results of this detailed analysis for a single body

of revolution whose area distribution is composed of three parabolic arcs.

The dimensionless zero-lift wave drag tabulated in figure 4 demonstrates

that as few as 25 points yield a solution accurate to within 1.75 percent

of the analytical solution. This suggests that by a judicious choice of

intervals (not necessarily equal) a fewer number of points may be con-

sidered which will yield numerical solutions in almost exact agreement

with analytical solutions and thereby make desk calculations feasible.

Preliminary calculations indicate that zero-lift wave-drag values of any

one component of a configuration which are essentially identical to the

analytical values can be obtained with as few as i0 unequal intervals if

the intervals are systematically determined from information concerning

the source strengths which define the geometry of the component.

CONCLUDING REMARKS

A numerical method based on linearized and slender-body theories,

which is easily adapted to electronic-machine computing equipment, has

been developed for calculating the wave drag of single- and multiple-

component configurations from a knowledge of the second derivative of the

area distribution of a series of equivalent bodies of revolution. Zero-

lift wave-drag results have been calculated at a Mach number of i for

several simple analytical shapes (bodies of revolution) by the present

method and by a method which employs the Tchebichef form of harmonic

analysis of the configuration area distribution. The relative accuracy
and computational time required of both methods to calculate zero-lift

wave drag at a Mach number of I have been evaluated by comparing the

zero-lift wave-drag solutions for these simple shapes computed by both

methods with those obtained from analytical solutions of the wave-drag
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equations. From these results it was possible to evaluate also the
relative accuracy and computational time required of both methods to cal-
culate the zero-lift wave drag at supersonic speeds. The following remarks
are warranted as a result of these evaluations.

For the pairs of bodies considered in this report at a Machnumber
of i, both methods yield numerical solutions for the zero-lift wave drag
of each body alone to an accuracy of a fraction of i percent of the ana-
l_ical solutions. Calculations by both numerical methods of the zero-
lift interference wave drag between bodies were generally accurate to
within a fraction of i percent; however, in somespecial cases for which
the interference was small, these results were accurate to within only
-8 and +14 percent of the analytical values for the harmonic analysis and
the present method, respectively. Total zero-lift wave-drag solutions
generally were calculated more accurately as the sumof the zero-lift
wave drag of each body alone plus the interference between bodies. All
total drag results for bodies with no singularities or discontinuities in
the second derivative of their area distributions were accurate to within
a fraction of i percent of the analytical solutions, and for bodies with
singularities the results were accurate to within 3 percent of the
analytical solutions. Both methods required the samecomputing time.

For total zero-lift wave-drag calculations at supersonic Machnumbers,
the relative accuracy and computing time required by both methods is com-
parable for airplane-type configurations. For systems of bodies of revo-
lution both methods yield similar results with comparable accuracy; however,
the present method only requires up to 60 percent of the computing time
required of the harmonic-analysis method for two bodies of revolution and
less time for a larger numberof bodies.

AmesResearch Center
National Aeronautics and Space Administration

Moffett Field, Calif., Oct. 17, 1958
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APPENDIXA

DIMENSIONLESSZER0-LIFTWAVE-DRAGEQUATIONS

In order to take advantage of the decrease in the numberof parameters
resulting from similarity considerations and to facilitate the calcula-
tions, the quantities defined in the METHODsection will be madedimen-
sionless. The procedures presented apply to all of the sheared or
equivalent configurations previously discussed. However, in the interest
of simplicity, the dependenceof the quantities upon _ and 8 will be
omitted from the notation.

To establish a general dimensionless coordinate system each coordinate
is divided by a characteristic length, areas are divided by somereference
area_ volumes are divided by somereference volume, and so on. In this
manner the relationship between dimensional and dimensionless lengths and
longitudinal area distributions can be written

: ! (A1)
kx

Y (A2)
h = ky

z (A3): k--_

i

_(_) -- _ S(x)
-_i_< x<for Zi<_ _ <

- kx --_xx

(A4)

where kx, ky_ and kz are characteristic lengths in the x 3 y_ and

z directions, respectively, and SR is the reference area. From a

differentiation of equations (AI) and (A4) the relationship between the

derivatives of the dimensional and dimensionless area distributions are

found to be

kx

_,(_) : _ S,(x)

_,,(_) : kx__is"(_)
SR

(AS)

(A6)

With the aid of equations (AI) to (A6), the general relationship between

the dimensional and dimensionless zero-lift wave drag can be shown to be
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D -r rS (q (AT)
\kxj

Values of the characteristic lengths and reference areas are tabulated

below for bodies of revolution and wings or tail surfaces.

Configuration

Body of revolution

Wing or tail surface

kx ky k z SR

_I=Z ...... SO

Co/2 bo/2 to to(bo/2)

z

The characteristic length _ or Z1

is the half-body length and So is
Y the maximum frontal area of the

body. The characteristic lengths
-- _7_ for wings or tail surfaces are

_ "_ shown in sketch (c). By means of

equations (AI) to (A6) and the
above table, the dimensionless zero-

c.\_ / _ / lift wave-drag equations for both
the present method and the method

of reference 3 can be determined

as discussed in the following

paragraphs.

Sketch (c)

PRESENT METHOD

Single Body of Revolution, S'(-Zl) = ©, S'(Z) _ 0

The zero-lift wave drag for this kind of body is given by equation (5),

from which the dimensionless form is determined to be

: - _-_ _ - _l)S"(_2)(ZnI{1-{21+Zn Z)d_ld_ 2 +

i
7[ [S'(1)]2[In 22 _(1) l }In S_ol + S'(1)f S"(_2)(lnll-_21+Zn _)d_ 2

-i

(A8)
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In accordance with equations (7) and (8), the dimensionless expressions

D1 and D2 are given by the first and second terms of equation (A8),

respectively.

Single Body of Revolution, S'(-Z1) = S'(Z) = 0

For this kind of body the second term of equation (A8) is identically

zero and the dimensionless zero-lift wave drag is given by only the first

term. This first term can be simplified, however, for bodies of revolution

with S'(-I) = S'(1) = O. After an integration by parts, it is a simple

matter to show that the Zn _ term vanishes. Hence,

1 1

D1 = 2rcl f f _,,(_l)_,,(_2)Znl_i__21dSld_ 2 (k9)
-1 -1

Multiple-Component Configurations

The general relationship between the dimensional and dimensionless

equations for an equivalent body of revolution of a multiple-component

configuration is given by equation (A7). The total zero-lift wave drag

of an equivalent body of revolution of a two-component configuration cam

be expressed by the unaveraged expression for equation (35). Hence, if

each component is made dimensionless with respect to its own characteristic

length and reference area, the relationship between the dimensional and

dimensionless total zero-lift wave-drag equations is

S--R-Rq_E + qDHH + (__]_ (_-___{_qDEH
DT = x

(AIO)

Experience has demonstrated that in the majority of cases it is more

convenient to make the complete configuration dimensionless with respect

to only one of the components. In this case equation (A7) is applicable

to the total configuration and values of SR and kx are used for only

one (either) component.

In view of the foregoing, the dimensionless finite-series form of

the zero-lift wave-drag equations developed in the METHOD section of this

report can be obtained if AS"(x), x, and _ are replaced by _"(_), _,

and Z/kx, respectively, and if the logarithm terms of the equations for

D2 and/or DI are properly evaluated. As a typical example, the dimen-

sionless zero-lift wave-drag equation for a single body of revolution

with S'(-Z1) = S'(Z) = 0 can be written (see eq. (28))
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I i-z

i=2 j=l

where, from equation (17),

_z(_i,_j) = (_i-_j) 2Znl_z-_21

(All)

(AI2)

METHOD OF REFERENCE 3

Use of equations (AI) and (A_) in equations (F4), (F2), and (F3)

yields the dimensionless zero-lift wave-drag equation for an equivalent

body of revolution for the method of reference 3

oo

5 = _ _An2
n:l

(AI3)

where

2I° a_(_)-- sin(n_)d_ (AI4)

and

LT. z+Z.'_ (AI5)

SIMILARITY CONSIDERATIONS

With the definitions of kx, ky, kz, and SR tabulated above, a

general expression for the wave drag, at any supersonic Mach number, for

a system of bodies of revolution is

S 2

(AI6)

where
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and for an airplane-type configuration is

2
~ bO

(AI7)

where

co,
Dividing both sides of equations (AI6) and (AI7) by q and a proper

reference area, one obtains the wave-drag coefficient

crib = s'7"

b 2 bo

(A18)

(A19)

For bodies of revolution SB = So = _/4do 2, where do is the maximum

diameter of the body. For airplane-type configurations b2/Sw = A, the

aspect ratio of the wing and to/C o = To, the maximum thickness ratio of

the airfoil section. Therefore equations (AI8) and (AI9) can be written

2

= do

2
bo

(A20)

(A21)

Equations (A20) and (A21) demonstrate the advantage to be gained from

similarity considerations which are afforded as a result of wave-drag cal-

culations made in a dimensionless coordinate system. From equations (A20)

and (A21), it is clear that dimensionless wave-arag calculations of a

single configuration, in effect, yield the wave-drag coefficients for an

entire family of related configurations. The wave-drag coefficients of

geometrically similar families of bodies of revolution are related by the

fineness ratio of the bodies_ and those for geometrically similar airplane°

type configurations are related by the aspect ratio and maximum thickness

ratio of the wings.
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APPENDIX B

EVALUATION OF THE INTERFERENCE INTEGRAL FOR

PAIRS OF BODIES OF REVOLUTION

In the METHOD section of this report the zero-lift interference wave

drag between a pair of bodies with S(-ZI) = S(Z) = O, in the arrangement

shown in figure 2, is given by equation (42). If the complete configura-

tion is made dimensionless with respect to body E, that is, both x coor-

dinates are divided by ZE and both area distributions are divided by

SEo , equation (42) can be written (see appendix A)

IE IH

i=l j=l

where

l_o e)2_nl_ij-icos01deI(_ij,B) = _ (_ij-B cos (B2)

aij = _Ei-(_Hj+5) (B3)

i = __A (B4)
ZE

This appendix will evaluate the integral function defined by

equations (B2) to (B4). Using the substitution

_ij
7 -

(B5)

one can write equation (B2) as

[ So_(gij,_) = _2 i (y-cos e)aZn(7-cos e)2de+Zn B (7-cos e)2d

(B6)

Let

K(%) = _- _ (7-cos e)2_n(7-cos e)ade (B7)
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If the integrand of equation (B7) is grouped as

i/2(7-cos O)2dO, integration by parts yields

K(y) = 72 + Znly+l I _ 2

27 ifo sin20 dO i i_y-cos 0 2

Since

Zn(y-cos O)2 and

0 sin 0 de +
y-cos 0

sin20 cos 0 dO
y-cos 8

(B8)

sin20 l-cos20 72-1
= = 7+cos 0

y-cos 0 y-cos 0 F-cos 8

and

sin20 cos 0 = cos 9-cosSO = cos28+7 cos 0+(72-i) 7(72-1)
F-cos a y-cos a y-cos a

equation (B8), after the indicated integration of the simple terms is

performed, can be written

K(7) = 2 + ZnI7+ll + 7 3Y2 + - +
8 sin 0 dO -
y-cos 0

3 2_ i da
7 _ 7-cos 0

(B9)

If the integrand of the first integral expression in equation (B9) is

grouped as 9 and (sin a/y-cos O)da, integration by parts yields

ifo a sin a da : ZnIy+ll ifoy-cos a - _ Zn(7-cos a)dO
(Bio)

Now

_. Zn(y-cos O)da = _n [
for 171--> 1 (BII)
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The partial derivative with respect to y of the left-hand side of

equation (BII) is zero for lYl < i. This demonstrates that the integral

expression is independent of 7 and hence has a constant value for

IYl < i. The constant is evaluated as _n 2. Therefore

8 sin 8

y-cos 8
d8 =

Znly+ll +Zn 2-Zn(171+74_Z_-l) for

znIy+ll+zn2 for

(B12)

The last integral expression in equation (B9) is evaluated as follows:

F-cos 8

___y2-1 tan

2 tan- z < Y--_ for

i i _-y 2 tan 2I-O+(l+y

_n i 8-(l+y
__y2 tan _ 0

Therefore

i

-i

_2_i

0

for y > i

for y < - i

for lyl_<1

(B13)

From equations (BI2) and (BI3) equation (B9) reduces to

+ 21--)Zn 2 + <Ye + 21--)Zn(IYI+_[F2-1) Iy147m-T- 

for I 1> m

for ly!_<l

(B14)

The second integral of equation (B6) evaluates simply as

i_o (y-cos 8)2d8 : _,2 + _i
(B15)
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By means of equations (B5), (B7), (BI4), and (BI5), equation (B6) is

written

_(_ij,_) = _2 _K C_ + [C_2 + I] Zn B} (BI6)

where K(_ij/B) is given by equations (B5) and (BI4). Equation (BI6) can
be further simplified by applying the conditions for bodies of revolution

with S'(1) = O. The terms of the equation resulting from substitution

of equation (BI6) in equation (BI) which are constant or are proportional

to aij and _ij 2 will vanish as a result of the conditions imposed for

all values of aij by equations (25) and (26) for zero area gradient at
the ends of a body of revolution. Therefore, equation (BI6) can be written

II a i _ [Zn(l_ijl+_ij2-B2)-Zn l
+ 2) -

-f( ij,B) = for l ijl >

for l ijl --<

(BI7)

From figure 2 it can be seen that B is the dimensionless longitudinal

distance defined by the intersection of the Mach wave (_d cos @ = _d

for @ = 0°) with the axes of both bodies. Also, _ij is the dimension-

less longitudinal distance between pairs of points, one on each body, used

in the double summation of equation (BI). Consequently, l(_ij,B) = 0

for l_ijl _ B has the important physical interpretation that any parts

of a configuration which lie on or outside the Mach cones from the nose

and tail of the configuration do not contribute to the interference wave

drag.

Wing and tail-surface components of equivalent bodies of revolution

have coincident axes (d = 0); therefore, the dimensionless zero-lift

interference wave drag between such equivalent-body components can be

calculated by the present method with values of l(_ij,O). The zero-lift

interference wave drag between the actual components must, however, be

obtained from a graphical averaging process. Values of l(_ij,O) are

calculated directly from equation (B2) with B = O. Values of l(_ij,B)

have been calculated for 0 _ aij _ 3.10 in increments of 0.01 and
0 _ B _ 3.0 in intervals of 0.2 and are presented in table IV. A value

of aij = 3.1 corresponds to a longitudinal separation of component cen-
ters of i.i half-component lengths of the largest component and should

be adequate for most practical configurations.
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APPENDIX C

AN ANALYTICAL APPROXIMATION OF AIRFOIL-SECTION AND

PLAN-FORM THICKNESS DISTRIBUTIONS

The area distribution of a wing or tail surface depends upon the

thickness distribution of the plan form which, in turn, depends upon the

thickness distribution of the airfoil section. The plan-form area and

thickness distributions can not be expressed in analytical form unless

such an expression is available for the airfoil-section thickness distri-

bution. In some cases the airfoil-section thickness distribution is

available in analytical form; for example, that for the NACA four-digit-

series airfoil sections is given by a power series. In many other cases,

such as the NACA 6-series airfoil sections, the thickness distribution is

not available in analytical form; however, the thickness distribution is,

in general, accurately specified at many airfoil-section chord stations.

The slope of the airfoil-section thickness distribution is always known

for at least one chord station, usually at the chord station for maximum

thickness, where the slope of the thickness distribution is zero. In this

appendix a simple approximation of the airfoil-section thickness distri-

bution will be made which affords an analytical expression for the thick-

ness distribution from a knowledge of the thickness at specified chord

stations and the slope of the thickness distribution for at least one

chord station. With this information, an analytical expression for the

plan-form thickness distribution of wings and tail surfaces will also be

determined. The distributions will be determined in the dimensionless

coordinate system described in appendix A.

Airfoil-Section Thickness Distribution

The thickness distribution of an airfoil section is generally

specified at a sufficient number of chord stations that it can be approx-

imated quite accurately by a series of adjacent parabolic-arc segments of

continuous slope. Concerning zero-lift wave-drag calculations, errors

introduced into the calculation of S(_), S'(_), or S"(_) by this approx-

imation are far less significant than those inherent in the various

numerical calculation methods for the wave drag.
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Consider the dimensionless airfoil-section thickness distribution
and its derivatives shownin sketch (d). The thickness distribution is

r'(a )

I I I J l a | I

j--
V

#-
r'(a)

,,
I I

T (a)

i J i |

_llJ 1112I_-1'13 _l.-I fll. _ _LI'I

I
-I

QL_'z Q1-2 QI-I _!

I

Sketch (d)

expressed analytically as

T(_) = f(_) for -1 _ _ _ 1 (Cl)

where f(_) is a function of _ which defines the shape of the thickness

distribution and _ is the dimensionless chord station measured positive

and negative in the free-stream direction from the 50-percent chord as the

origin. It should be recalled that the chord station defined in this

manner is made dimensionless with respect to the half chord of the airfoil

section. The function f(_) can be determined analytically as a series

of adjacent parabolic-arc segments of continuous slope when the following

conditions are satisfied:

i. Each parabolic segment satisfies the given thickness at two

consecutive chord stations, _i and a.i+I.
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ii. The slope of the thickness distribution is continuous and is
known for at least one chord station.

The function f(_) can be written for a parabolic arc through two
consecutive points, _i and _i+i, such that

T(_) = a(_-_i)2+b(_-_i+l)2+c(_-_i)(_-_i+i) for _i ! _ _ _i+i

(c2)

also

T'(_) = 2a(_-_i)+2b(_-_i+i)+c[2_-(_i+¢i+i)] for mi _ a _ _i+l

(C3)

and

T"(m) : 2(a+b+c) for mi S _ _ mi+z (c4)

With 7(_i) , 7(_i+l), and T'(¢i+ l) known, the constants in equations (C2)

to (C4) can be determined as

a = T(mi+1) (C5)

(_i+i-a.i) 2

b = (C6)
(mi+l-mi) 2

T'(_i+i)
c : -2a + (C7)

_i+l-_i

Since T'(¢) is linear and T"(m) is constant over each segment of

parabolic arc, it is more convenient to express _'(m) at each mi

T'(_i) = 7'(_i+i)-(_i+i-_i)T"(¢)

as

(c8)

At each predetermined chord station, _i, of the actual airfoil section

T(m) = T(m i) where T(mi) is known, T'(m) = _'(mi) where T'(mi) is given

by equation (C8), but is known for at least one value of mi, and

T"(m) = T"(m i) where T"(mi) is given by equation (C4).

To illustrate the procedure for finding _(_), _'(_), and T"(_)

consider a simple parabolic-arc airfoil section and an NACA 6XA00Y airfoil

section. For the parabolic-arc airfoil section the known conditions are

i. _(_i) : _(-1) = 0

ii. _(_i+i) = _(0) = i
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iii. T'(_i+l) = T'(0) = 0

iv. _i+z-_i = 1

From conditiors i and iv in equation (C6) b = 0; from conditions ii and iv

in equation (C5) a = i; and frcm conditions iii and iv and the fact that

a = i in equation (C7) c = -2; hence_ from equations (C2) to (C4)

T'(_) : -2_

T"(_) = -2

For the NACA 6XA00Y airfoil section the known conditions are

i. 0.6 _ _ I T(_) is given for _i+z-c_i = 0.1

T(_) is linear, hence <'(0.6) can be found

ii. -0.8 _ _ _ 0.6 T(_) given for _i+z-c_i = 0.i

iii. -0.95 _ _ _ -0.8 T(_) given for _i+z-_i = 0.05

iv. -i _ _ -0.95 T(_) given for _i+z-_i = 0.025

From condition i, T(_ i) is given and

T(_i+l)-T(_i) (C9)
T'(_i) = _i+l__i

• "(_i) = o

To continue from condition i, T'(0.6) must be found and used with

condition ii. From equation (C9)

<,(o.6) = _(z)-_(o6) = 2 _[<(l)-<(o.6)] (ClO)
1-0.6

At _ = 0.5, from condition ii and the result of equation (CI0), a, b,

and c are found from equations (C5) to (C7). In equation (C7)

T'(_i+z) = T'(0.6). Next T"(0.5) is found from equation (C4). Then suffi-
cient information is available to calculate T'(0.5) from equation (C8).

With T'(0.5) the above steps are repeated and conditions ii to iv are

used until T(-I), T'(-I), and T"(-I) are determined.
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Wing Plan-FormThickness Distribution

Consider those wings which satisfy the following conditions.

i. The boundaries of the wing are such that the plan form and the

spanwise variation of the local chord can be expressed analytically.

ii. The wing has the same basic airfoil section at all spanwise

stations; that is 3 only spanwise variations in thickness and/or thickness
ratio are allowed.

iii. The thickness distribution of the basic airfoil section can be

expressed analytically as described in the preceding part of this appendix.

iv. The spanwise variation of the thickness along lines of constant

percent chord can be expressed analytically.

Actually, condition ii can be relaxed to include wings with one basic

airfoil section out to a discontinuity in plan form, for example, a fence

or extended leading edge_ and a different basic airfoil section from the

discontinuity out to the wing tip. In such cases each portion of the plan

form is treated as a separate entity.

Consider the one wing panel of a typical plan form shown by the solid

lines in sketch (e) in dimensionless coordinates. If the abcissa of any

K=

---
-I

Sketch (e)

!IK I,,
point in the plan form is measured from the local 50-percent chord station

and this distance is divided by the half chord of the local airfoil sec-

tion, any point in the plan form, (_,_), can be expressed as a chord

station of the local dimensionless airfoil section. With the aid of

sketch (e) this is accomplished by the transformation

_(_,_) - _-K°_ (CII)
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where K o is the tangent of the sweep angle of the 50-percent chord line

of the extended wing panel and _(_) is the local half chord. All points

in the plan form which yield the same value of _(_,_) define lines of

constant percent chord (see long dashed line in sketch (e)), and since

the basic airfoil section is the same at all spanwise stations_ the dimen-

sionless thickness of the local dimensionless airfoil section is constant

along these lines. Therefore_ the thickness at any point in the plan

form can be found as the product of the thickness at the proper chord
station of the basic airfoil section and a term which allows for the span-

wise variation of the thickness along lines of constant percent chord.

If ¢(_) represents the known analytical spanwise variation of the thick-

ness along lines of constant percent chord, an analytical expression for

the wing plan-form thickness distribution is

= (c12)

where T[_(_,_)] is a known analytical expression for the basic airfoil

section and _(_,_) is given by equation (CII).

Equation (C12) is applicable to all generalized wings which satisfy

conditions i to iv above. For instance, if the plan form is such that

the 50-percent chord line is nonlinear, equation (C12) is applicable when

equation (CII) takes the more general form

= _-Ko_+f(_)

In this case f(_) describes the nonlinearity of the 50-percent chord

line.

Equations (CII) and (C12) can be modified in a very simple manner

to yield the plan-form thickness distribution, and hence

S (_, _ b--q°0)co,

and

S' ({, _ b-Z°Co, 0)

, Co_

for sheared wing components of the equivalent bodies of revolution required

when calculating the zero-lift wave drag of an airplane-type configuration.

Consider the complete wing shown in figure 5. The traces in the

{,_ plane of the intersection of the oblique planes and the _,9 plane

define an angle _ with the _ axis such that
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= tan-1_ bo-- cos 8
Co

Hence, the traces through the extended wing tips and the _ axis (see

lines XX and YY in fig. 5) define a longitudinal distance l_(bo/co)COS 81 .

In accordance with reference 5 each element of the upper (positive

direction) wing panel is sheared a distance l_(bo/co)COS @I_ forward

and each element of the lower (negative _ direction) wing panel is

sheared a distance l_(bo/co)cos 81_ rearward for 0 _ @ < _/2 (see the

dashed lines in fig. 5). From figure 5 it can be seen that the tangent

of the sweep angle of the sheared 50-percent chord line of the upper and

lower extended wing panels can be defined, respectively, as

b o

KU = K°-_ _oo cos 8

K L = Ko+ _ bo-- cos 8
c o

(C13)

(c14)

The quantity K, rather than _ and 8, can be used to define the shearing

of the wing panels. The upper and lower wing panels are related in a

simple manner by

KU+KL = 2Ko (C15)

It will be recalled that the tangent of the sweep angle of the 50-percent

chord of the extended wing panel is used in equation (CII) to define the

parameter _. Hence, if K o in equation (CII) is replaced by K, the

plan-form thickness distribution of the wing panels of the various sheared

configurations can be written

(C16)

where

{-Kq (C17)
-

and K is defined by equations (C13) and (C14).

In calculating the area distribution and derivatives of the area

distribution for the various sheared configurations, the above means of

identifying the sheared configurations permits the use of only one vari-

able, K, to define these distributions. This will be demonstrated by the

sample calculations of appendix D.
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The equations derived above for the dimensionless wing plan-form

thickness distributions are also applicable to tail surfaces when the

characteristic lengths Co/2 , bo/2 , and to/2 for the tail surfaces are

used to obtain dimensionless coordinates in the x, y, and z directions,

respectively. For horizontal tail surfaces, equations (C13) and (C14)

are used with eHT = eW. For vertical tail surfaces, equation (C14) is

used with eVT = 9W+_/2. The sheared configurations for vertical tail

surfaces are symmetrical in z rather than _/2.



48

APPENDIX D

AN APPROXIMATE ANALYTICAL METHOD FOR CALCULATING

AREA DISTRIBUTIONS AND THEIR DERIVATIVES FOR

SHEARED WINGS OR TAIL SURFACES

The analytical expressions which will be developed in this appendix

for calculating the area distribution, the first derivative of the area

distribution, and the second derivative of the area distribution are

applicable to wings or tail surfaces which satisfy the following
conditions:

i. The spanwise variation of the 50-percent chord line is known

analytically.

ii. The boundaries of the plan form, the spanwise variation of the

local chord, and that of the thickness along lines of constant percent

chord can be expressed analytically.

iii. The same airfoil section is employed at all spanwise stations.

iv. The thickness of the airfoil section is known at a sufficient

number of chord stations to permit an analytical approximation of the

airfoil-section thickness distribution in the manner described in

appendix C.

Consider the typical half plan form for wings and tail surfaces

shown in dimensionless coordinates in figure 6. The figure represents

all trapezoidal-type half plan forms with taper ratio_ 0 _ X < i. The

general form of the equations which will be developed for the various

distributions is also applicable to the case for X = i. The details

of the solutions for this case_ however_ are simpler than those for

0 _ _ < i. The differences will be pointed out later when some sample

calculations are presented. The solid lines in figure 6 represent any

half plan form with 0 < _ < i_ and the short dashed lines represent the

extended half plan form. It should be noted the actual half plan form

and the extended half plan form are identical for X = O. It should also

be noted that all equations are based upon extended half plan form.

EXACT EQUATIONS FOR THE DISTRIBUTIONS

The dimensionless area distribution of any half plan form and its

sheared configurations is given by
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_u(e,K)_(e,K) = T(e,_,K)d_ (D1)

Differentiation of equation (DI) with respect to _ yields the first

derivative of the area distribution of the half plan form

=_nZ(_,K) _ at T(e'nz'El (921

Differentiation of equation (D2) with respect to _ yields the second

derivative of area distribution of the half plan form

_"(_,K):F %(e'K) _2_(_'_'K) _(_,%,K) _u dT(_,%,K) d%
d_+ _+ _+

_ de de d_

_(e,n_,K)d_ d_(e,_,K)d_
_ de de d_

d2_]Z

T(e,_z,K) de e (D3)

In equations (DI) to (D3) T(_,_,K) is the plan-form thickness distribution

of any of the sheared configurations and is given by

T(_,_,K): ¢(_)_[_(e,_,K)] (C16)

where ¢(_) is the known analytical spanwise variation of the thickness

along lines of constant-percent chord, _[_(e,_,K)] is the local airfoil-

section dimensionless thickness at a given percent chord, _(e,_,K) defines

lines of constant-percent chord for any point (e,_) in the plan form and

is given by

e-K_ (C17)
_(e,_,K)- _(_)

and K is given by equation (C13) or (C14). The upper and lower limits

of integration, _u(e,K ) and _Z(e,K), respectively, are the boundaries of

the half plan form. Also _T(e,_,K)/_e is continuous between limits of

integration.

To evaluate equations (DI) to (D3) it is convenient to make a change

of variable from _ to _ in accordance with equation (C17). In this
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manner one can subsequently makeuse of the fact that T"(_) is constant

over each interval of parabolic arc which approximates the airfoil-section

thickness distribution (see appendix C). With this change of variable

let

(DS)

and from equation (C17) the new lower and upper limits of integration

become, respectively,

(D6)

The change of variable for each term of equations (DI) to (D3) which

contains a function of _(_,_,K) can be made by means of equations (C16),

(C17), and (D4) and various combinations of their partial and total

derivatives. Thus,

(D7)

_2_(_'n'K) = @(_)T"(a) (D9)

dr(_,_,K):d_ @(_)T'(a) _ + [[d¢([_) T(a)+¢(_)T'(a) _] _d_ (DI0)

Exact Equation for S(_,K)

Substituting equations (D7) in equation (DI) and making the change

of variable from _ to

d_

aZ

Grouping the integrand of equation (DII) as _(_) and
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d_
_(_,_,K)yg d_

integration by parts yields

o_Z
where

,(_,_,K)--_(_,_,_) d_ d_
J d_

After integration by parts of the second term in equation (DI2)

_u

_(_,K) -- t_(_),(_,_,K)-_'(_)r(_,_,K)1_--_+/ T"(_)r(o_,_,K)d_
&,

c_

where

_(_,t,_) =,/',(_,_,K)d_

Exact Equation for S'([,K)

(m2)

(D13)

(DI4)

(DIS)

Substituting equation (D8) and equation (D7), evaluated at _u and _Z'

in equation (D2) and making the change of variable from _ to _ yields

_u

_,(_,_) =jr ®(_,_,_)_,(_)_ d_d_+_(d_ _u

c_

®(_)T(_) d__.i
d_

(DL6)

Grouping the integrand of equation (DI6) a_

_(_,{,K)_ d_
_ d_ d_

integration by parts yields
am

fg,(_,_) : [_'(_)a(%t,K)]_Z -
_Z

®(n z )_(% )

• '(_) and

d_u

• "(_)n(_, _,K)a_+_)(M)T(_u) d_

(Di7)

where

f _ d__dc_ (m18)
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Exact Equation for S"(_,K)

Substituting equations (D9), and equations (D7), (DS), and (DIO),

evaluated at _u and _Z, in equation (D3), making the change of variable

from _ to _ and collecting the terms

cgu

Ck_u d__u_ @(_u)T'(_U)dhu +

(DI9)

where

:
d_

(D20)

Limits of Integration

The limits of integration in the equations for the various distribu-

tions depend upon the plan form being considered. For practical half plan

forms only four limits of integration need be considered - the chord on

the _ axis, the leading edge, the trailing edge_ and the finite tip for

half plan forms with 0 < Z _ i. It should be noted that integration over

the half plan form in the h direction is transformed, by equation (C17),

to an integration over the basic airfoil section in the _ (or _) direc-

tion. Furthermore, the limits of _ integration never exceed ±i regard-

less of the value of _. The limits of _ integration as determined from

figure 6 and equation (C17) for the actual and extended half plan forms

are tabulated below:
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Limits of _ integration

Limit,
location

axis

Leading

edge

Finite tip

(0< h<Z)

Trailing
edge

Value

-i

-K_ t

Type of limit Where applicable

Lower -i _ { _ i All K

Upper -i < { _ K K > -i

Lower K _ _ < -i K _ -i

Upper (actual

half plan form)

Lower

(extended tip)

(K_t-k) _< _ <_ (K_t+h) All K

Upper K _< { < i K < i
i

Lower i < { < K K > i

Presented in figures 7(a) and 7(b) for half plan forms with 0 < h < i

and h = 0, respectively, are the regions and limits of _ integration

for all possible values of K. It should be noted that the distributions

of the actual half plan forms with 0 < h < i (fig. 7(a)) are found by

subtracting from the distributions of the extended half plan forms, for

values of (K_t-k) _ _ _ (K_t+h), the distributions for the extended tip

defined by _t _ _ _ i. It is for this reason that the half plan forms

are made dimensionless with respect to the extended half plan form. Note

also that the upper limit of integration is always constant (either -I

or i) and the equations for the distributions can be expressed as a func-

tion of the lower limit. More important, however, this treatment of the

limits of integration permits the calculation of the distributions for

the half plan forms with 0 < k < i from a very simple manipulation of the

basic data for the extended half plan forms. This procedure will be

explained in detail in the sample calculations. Similarly, in the case

of an airplane-type configuration, the distributions of the exposed half

plan forms can be conveniently found from the basic data of the extended

half plan forms.

It now remains to investigate the effect of the limits of integration

on the terms in equations for the distributions (eqs. (DI4), (DI7), and

(DI9)) which are evaluated at the limits. Only the terms in these equa-

tions which contain T(_) and/or d_/d_, evaluated at the limits, will

vanish when the values of _ are such that the limits of integration of

the half plan form are

i. Along the _ axis, in which case d_z/d _ = 0.

ii. Along the leading edge, in which case T(_u) = T(-I) = 0 or

• : = o.
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iii. Along the finite tip, in which case dqu/d_ = 0 or dBz/d_ = 0

when Bt is the lower limit of the extended half plan fom.

iv. Along the trailing edge if the basic airfoil section has or

is assumed to have zero thickness at the trailing edge, in which case

T(C_u) = m(1) = 0 or m(_) = m(1) = O.

APPROXIMATE EQUATIONS FOR THE DISTRIBUTIONS

The approximate equations for S(_,K), _'(_,K), and S"(_,K) will be

determined by examining equations (DI4), (DI7), and (DI9), respectively,

in the light of the approximation of the airfoil-section thickness dis-

tribution made in appendix C. It will be noted that each of equa-

tions (DI4), (DI7), and (DI9) contains a term of the form

_u

For the approximation made in appendix C, T"(_) = T"(_i) = a constant for

_i _ _ _ _i+l (see sketch (d)). Therefore, if the integration in expres-
sion (D21) is performed as the sum of integrations over the intervals

_i+l-_i, m"(_i) can be taken outside the integral sign for each interval.

The sum of the individual integrations which make up the integration of

the expression (D21) can have two forms, depending on whether _u is

less than or greater than _Z. The form of the integration for these
two cases can be determined with the aid of figure 8 which defines the

stepwise limits and direction of _ integration. Case I, for which

_u < _Z applies 3 regardless of plan form, when _ _ K; and Case II, for

which _u > _Z applies, regardless of plan form, when _ > K.

With the aid of figure 8 and the approximation in appendix C, the

expression (D21) can be written

_u F_i(_) +

U+I _i-i

_ T"(_i'l)I_i f(_'_'K)d_+.

i:i(_)
_u

T"(_U_I) / f(_,_,K)d_ for Case I

%
(D22)

and
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U-l _i+i

_, T1r(_i) I f(_, _,K)d_ +

i =i (_Z)+i c_i

_U
£-,

T"(mU) / f(_,{,K)d_ for Case II
tg_

_U
(D23)

If mZ and _ u can be made to coincide with c_i_I and a_U for Case I and

with mi+1 and mU for Case II, the first and last terms of equations (D22)

and (D23) will vanish. This can be accomplished for the first terms by

choosing _ such that mZ always corresponds to a value of _i for

which the airfoil-section thickness is specified, and for the last terms

by always integrating to the leading or trailing of the extended half

plan form (i.e., c_ = _U = ¥i). As mentioned earlier, this is accomplished

for half plan forms with 0 < _ < i by subtracting the distributions of

the extended tip from those for the extended half plan forms.

The approximate equations for S({,K), S'({,K), and S"({,K) are

found by substituting the form of equations (D22) and (D23), with the

proper integrand, in the integral term of the exact equation for each

distribution. For S({,K), equation (DI4), f(_,{,K) = F(_,{,K). For

S'(_,K), equation (DI7), f(_,_,K) = 9(_,_,K). For S"(_,K), equation (DI9),

f(_,_,K) = A(_,_,K). The terms of equations (DI4), (DI7), and (DI9) which

are evaluated at the limits of integration are treated in the same manner

as discussed in connection with the exact equations for the distributions.

SAMPLE CALCULATIONS

Complete Half Plan Forms, 0 ! _ < I

The area distribution, the first derivative of the area distribution,
and the second derivative of the area distribution will be calculated for

the families of half plan forms shown in figure 7. The airfoil sections

will be considered to have a linear spanwise variation in thickness along

lines of constant percent chord, and, for simplicity, will be considered

to have zero thickness at the trailing edge. s The spanwise variation of

the half chord is given by

SGenerally_ the thickness at the trailing edge of the airfoil section

is sufficiently small that it can be considered to be zero without intro-

ducing any appreciable error in the distributions. Any small error which

might be introduced, however, has a negligible effect upon the zero-lift

wave-drag calculations.
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From equations (C17) and (D24)

and

= l-n (D24)

i-_

=i
_-K

_-K
D26)

The linear spanwise variation of the thickness along lines of constant

percent chord is

_(_) = I-C_ for 0 _ _ _ 1 (D27)

where

C = i-_ for 0 _ h < 1 (D28)
l-k

In equation (D28) c is the ratio of the airfoil-section thickness at the

finite tip to that at the vertical plane of symmetry, and h is the taper

ratio of the actual half plan form being considered. For the spanwise

thickness variation, C is normally defined by only the numerator of equa-

tion (D28). In the present case, however, the factor i/l-h is required

in order that equation (D27) be valid for 0 _ _ _ i. This factor is the

ratio of the extended semispan, bo/2 , to that of the actual semispan, b/2.

With C defined as in equation (D28), for half plan forms with 0 < h < i,

all or a portion of the spanwise thickness distribution of the extended

half plan form may be negative. This imposes no serious consequences

since the distributions for 0 < h < i are obtained by subtracting the

contributions for _t _ _ _ i from the distributions for 0 _ _ _ i.

For extended half plan forms it is always possible to calculate the

distribution at values of _ for which the lower limit of integration

corresponds to values of _i for which the airfoil-section thickness is

specified, and the upper limit of integration is always the leading or

trailing edge. Hence, for extended half plan forms the first and last

terms of equations (D22) and (D23) vanish. With this information plus

conditions i to iv previously discussed in connection with the limits of

integration, the approximate equations from which the distributions can

be calculated for half plan forms with 0 _ h < i are
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CLu

[T(_)_(_,_,K)-T'(_)r(_,_,K)]_Z+

2 _i -i

_. T"(_i.l) ? F(_, _,K)d_

i=i(_) _i

I-i c_i+_

f T"(_i) I F (c_,_,K)dc_

.i=i (_Z)+l c_i

for Case

for Case II

(D29)

2 c_i-i

i=i (cs Z ) csi

I-i

f T"(_i)

,i=i (coZ )+i

for Case I

for Case II

(D30)

2 _i -z

f T" (C_i_l) 7 A(_, _,K)d_

i:i (_Z) c°i

I-i

f
-i=i(c_Z

for Case li

_cLi+i

T"(O_i) / A(c_,[,K)dc_ for Case II

i
)+i

6nu at / d_

2 _c_t _c_t dqz-_ ¢(qtl'r'(_ t ) dqt (D31)

Sample calculation of S(_K).- For half plan forms with 0 < _ < i,

first consider the extended half plan form and make a change of variable

in equation (D27) by using equation (D26), hence

_-K (D32)¢(_,[,K)o (l-C)+C__---f•

From a differentiation of e_uatlon _D26) wlth_respec_t'to (7,,

°



58

(D33)

Substituting equations (D32) and (D33) in (DI3) and performing the

indicated integration

: -(l-C) _
<_-:f) _ b-K/ (D34)

Substituting equation (D34) in equation (DI5) and performing the indicated

integration

F(a,,{,K) : -(1-C)(_-K)lnlc_-K I + C (_-K) 2 (D35)
2 _-K

Substituting equation (D35) in the second term (for Case I) of

equation (D29)

2 c_i-1

T"rCs', 1-1;'I f(_,_,K)d_

i:i(_z)

2

=-(I-C) ({-K) _, T" (c_i_l) [(_i_l-K) (In Ic_i_l-K l-i) -

i =i (_l)

C Z T"( n I_i_l-K I -Zn Ic_i-g I )(csi-K)(Znlc_i-K[-l)] + [ (C-K) 2 c_i-l)(l

i=i (_Z)

for Case I (D36)

Each of the summations in equation (D36) is very large for _Z close to

the value of K and infinite for _ = K. To avoid this singularity,

it is therefore desirable to multiply and divide both terms of the right-

hand side of equation (D36) by _z-K. Furthermore, since the uppermost

limit of the stepwise integration (_U) is -i along the leading edge of

the half plan form, equation (D36) can be written as a function of only

the lower limit, _Z, and K. Thus

K T ill
i =i (_Z) c_i

-1

r(_,{,K)d_= -(l-C){{-K% AI(_z,K)+

[( {-m ]BI(_z,K ) for Case I
2

(D37)
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where

2

AZ(_z,K)= (oil-K)_, T"(_i__)[(_i__-K)(ZnJ_i__-Kl-l)-

i=i(_;)

(o_i-K)(_n[c_i-K[-1)] for Case I (D38)

and

2

BI(¢I,K ) = (¢_-K) 2 _, T"(¢i-1)(_nl¢i-l-K[-lnl¢i-KI )

i=i(_z) for Case I (D39)

Similarly, since _U = I along the trailing edge,

I-1 n_i+l (_--_-K)

Ii:i(_z)+_

BII(_z_K ) for Case II
2

(D40)

wh ere

I-1

AII(_z,K) = (_z-K) _, T"(_i) [(_i+z-K)(Znl_i+z-KI-l) -

i:i(_z)+_

(_.i-K)(tnlcGi-Kl-l) ] for Case IX (Z_I)

and

I-i

Bii(o_ t,K) = (a,z-K) 2 _ 1-"(c_ i)(znl_i+__-KI-znl_-K[)

i=i<_t" )+z for Case II (D42)

Substituting equations (D34), (D35), (D37), and (D40) in equation (D29)

an expression for the area distribution of the extended half plan form

is obtained as

[(_,K) = (l-C) {-K [C(_t,K)_D(_z,K) ] + 2\_z-K/ (_t, K ,

(I)43)
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where

c( z'K) -- T( z) - \%-K/

D(_ z,K) = (_z -K? [T' (_Z)Znl _z-KJ -T' (%a)znl _u-KI ] (D_5)

F( Z,K) = (')] (D47)

The left-hand side of equations (D44) to (D47) is correctly given as a

function of only _Z and K even though _u, T(_u), and T'(_u) appear in

the right-hand side of the equations. For the extended half plan form it

will be recalled that _u = _U is always ;i, T(em) (included for the

general case) is zero along the leading edge but may not be zero along

the trailing edge of the half plan form, and T'(cha ) is one constant value

along the leading edge and another constant value along the trailing edge

of the half plan form. For these sample calculations; it will be recalled

that T(_u) has been assumed zero along the trailing edge; consequently,

the term containing T(cga) in equations (D44) and (D46) vanishes. For

Case I and Case II A(_z,K) and B(_z,K ) are given by equations (D38) and

(D39) and equations (D41) and (D42), respectively.

To evaluate equation (D43) it will be found convenient to calculate

the values of A(_z,K ) through F(_z,K) in tabular form for all values of

K of interest and for all values of _Z corresponding to values of

-i _ _i N i for which the basic airfoil-section thickness distribution

is given. Then_ depending upon the value of {, _Z is obtained from the
table on page 53 and equation (D43) is evaluated with the aid of the

tabulated values of A(_z,K) through F(_z,K ).

Equation (D43) is also applicable to half plan forms with _ = 0, in

which case the actual and extended half plan forms are identical.

Equation (D43) is applicable to all geometrically similar extended

half plan forms. One such geometrically similar half plan form is the

extended tip of the extended half plan form defined by _t _ _ _ i. Hence,

the area distribution of the extended tip can be easily found if_ In

equatAon (D43)s _Z of. the extended-tip half 3plan form is taken _<L t
of the actual half _lan form. Then S(_,K) _or the extended t_d_scomes

_ I_ _"
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2

_(_,K) = for (K_t-X) __ _ __ (K_t+X

Equation (D43) for _ _ (K_t-+X

(m8 )

If _t happens to correspond to values of _i for which the airfoil-

section thickness is given, C(_z,K ) through F(_z,K) have previously been

calculated in finding S(_,K) for the extended half plan form. Otherwise,

these quantities can be obtained from individual or combined plots of the

tabulated values of C(_,K) through F(_z,K) versus their arguments; that

is, the values of these quantities are read from the plots at values of

_Z obtained by letting _Z = _t. Hence, the area distribution of the
half plan forms with 0 < X < i is given by the difference between equa-

tion (D43) for all values of _ and equation (D48) for

Sample calculations of S'(_,K).- Again the extended half plan forms

will be considered first. All the terms of equation (DI8) except _/_

have been found in terms of _, _, and K in the sample calculation of

S(_,K). This term is evaluated from equations (D25) and (D26) as

_ _ -K (D49)

Substituting equations (D32), (D33), and (D49) in equation (DIS) and

perfomming the indicated integration yields

--(1-C)znl -Kl-ct-K (DSo)

From a comparison of equations (D35) and (D50) it can be easily determined

from an inspection of equations (D36) to (D39) that by substituting equa-

tion (D50) in the second term, for Case I, of equation (D30) one can obtain

2 °

_(_,_,K)d_ = (I-C) _ AI(_z,K)-C BI(_z,K)

for Case I (DSI)

and similarly



62

I-1 c_i+l

•"(_i) . a(_,_,K)d_--(l-C)_ aII(_z,K)-
i--i(_z)+_

c _-K
(_z_K)_ BII(_z,K)

for Case II

(D52)

where A(_z,K ) and B(_z,K ) are given for Cases I and II by equations (D38)

and (D39) and equations (D41) and (D42), respectively. Substituting

equations (D50), (D51), and (D52) in equation (D30) an expression for the

first derivative of the area distribution of the extended half plan form
is obtained as

1 [A(_z,K)+D(_z,K)]+ cZ'(_,K)_ -(l-C) _-K [B(_z,K)+F(_t,K) ]
(_t-K) =

(D%)

As in the case of the area distribution, S'([,K) for the extended half

plan form (actual half plan form for h = O) is obtained from equa-

tion (D53) by using the proper value of _Z obtained from the table on

page 53 for each value of _ for which _'(_,K) is calculated. Values

of A(_,K), B(_,K), D(_,K), and F(_,K) are obtained from the previous

calculations of S([,K). For the extended-tip half plan form _'([,K) is

obtained by following the same procedure outlined in finding S([,K).

That is, in the region for which (K_t-h) _ [ _ !K%+_), _ in equa-

tion (D53) is replaced by _t, the values of A[_z,K), D(_z,K), and

F(_z,K ) are obtained from the aforementioned tabulated values, or plots,

by letting st = _t_ and the resulting values of _'([,K) are subtracted

from those of the extended half plan form at the proper values of [.

Obviously, for [ _ (K_t±h), S'(_,K) for the extended tip is given by
equation (D53).

Sample calculation of _"([,K).- For the extended half plan forms,

substituting equations (D32), (D33), and (D49) in equation (D20) yields

the function

A(_,_,K) = I-___C+ _ (D54)
-K _-K

Using equation (D54), the first term of equation (D31) becomes

c s(% K)1-_._cc[_'(_u)-_'(_)] +_-K

where B(_z,K ) for Cases I and II is given, respectively, by

equations (D39) and (D42).

(D55)
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To evaluate the second and third terms of equation (D31) consider

the equations of the leading and trailing edges of the extended half plan

forms. In terms of both _ and _ variables

_±i (D56)= K±--T

and

= _I (D57)

The upper and lower signs of the ± sign in equations (D56) and (D57) are

used with the leading and trailing edges, respectively. First consider

the evaluation of the second term of equation (D31) when the leading or

trailing edge is the upper limit of integration. From equation (D49),

evaluated at _u, and equation (D57)

a_u _ X±l (D58)
_ K-_

_u/_u = d_u/d_ u ? i/(d_u/d_u) , from equation (D33), evaluated
and equation (D57)

Since

at _u,

_u (K±l)2

yQu= (D 9)
From a differentiation of equation (D56) with respect to

drlu _ 1 (D60)
d_ K±I

From equation (D32), evaluated at _u, and equation (D57)

¢(rtu) = (1-C)+C K-{ (D61)
K±I

Using equations (D58) to (D61) one obtains for the second term (upper

limit) of equation (D31)

3T'(_u) I(C_-K)¥(I-C)]_-K K±I (D62)

A general expression identical to that of (D62) is similarly obtained for

the last term (lower limit) of equation (D31).

For the extended half plan forms S"(_,K) is found by properly

combining expressions (D55) and (D62) (and its counterpart for the lower

limit) for certain ranges of the value of _. Regardless of the value

of K, for -i _ _ _ i, the last term of equation (D31) vanishes, because

d_z/d _ = 0 for these values of _. For IKI > i, and for I_I > i, when

the leading edge of the extended half plan form is the lower limit, the

trailing edge is the upper limit of integration and vice versa. There-

fore, for the extended half plan form (actual half plan form h = O)
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_"(_,K) =,

t-

"[(K;2)(1-C)+3(C¢-K)] .,(%)+ C B( z,K )_
1-C

for -i _ _ K i

[(K_2)(I-C(K+I)(_-K))+3(C_'K)] T'(an)+ _C B(_,K)-

[ (K+2) (I-C)+3(C_-K)](K_I) (_-K) T' (c_l) for I_I > 1

(D63a )

(D63b)

where the upper of the double signs is employed when the leading edge of

the extended half plan form is the upper limit of integration and the

lower sign is used when the trailing edge is the upper limit. It should

be noted that equation (D63b) is constant for C = i (constant airfoil-

section thickness ratio in the spanwise direction).

To calculate S"(_,K) for the extended tip half plan form, the same

procedure described in finding S(_,K) and S'(_,K) is employed. Again,

_ is replaced by _t for the actual half plan form in equation (D63a)

for values of (K_t-h) G _ G (K_t+%) and for _ _ (K_t±h) equation (D63b)

is used. The resulting S"(_,K) is subtracted from that of the extended

half plan form.

If the half plan forms considered previously have a more general

airfoil section such that the airfoil-section thickness is not zero at

the trailing edge, equations (D44) and (D46) are valid as shown, but for

the values of _ for which the trailing edge of the half plan forms is

a limit of integration, the terms of equations (DI7) and (DI9) which were

omitted in the above calculations must be evaluated.

Complete Half Plan Forms, h = i

I

-I

__q
I /-7, _'

/
Tronsformotion :

0 I

Sketch (f)

For the special case of half

plan forms with h = i, the extended

half plan form is seml-infinite and
a different definition of K and

different equations for the bound-

aries of the half plan form are

needed. As noted in appendix A, the

spanwise coordinate of half plan
forms with h = I is made dimension-

less with respect to the actual semi-

span, b/2. Hence the dimensionless half plan form for k = i is defined

as shown in sketch (f). With the half plan form so defined,



65

C = i-_ for h = i

and the equations for the distributions derived above are, in general,

applicable for h = i. However, for values of _ in the region of the

finite tip, (K-I) _ _ _ (K+I), the value of the upper limit defined by

the _ transformation noted in sketch (f) must be used in equations (D44)

to (D47), that is,

c_t = _-K_t = _-K

Furthermore, unless the values of _ in this region are so chosen that

0% corresponds to the values of _i for which the airfoil-section

thickness is given, the last term of equations (D22) and (D23) will not

vanish and must be evaluated.

Exposed Half Plan Forms

In calculating the distributions of the exposed half plan forms of

airplane-type configurations it is convenient to first calculate the dis-

tributions of the extended half plan forms. This provides an accurate

determination of plots of A(_z,K ) through F(_,K). If DB = DB(_ )
defines the body plan form, integrals of the type

for the exposed portion of the extended half plan form can be evaluated

in the manner described above for calculating the distributions of the

half plan forms with 0 < _ < i. For values of _ at which the distribu-

tions may be desired, it is unlikely that _(_B) will correspond to values
of _i for which the airfoil-section thickness is given. Hence, values

of A(_z,K ) through F(_,K) are obtained from plots of these quantities

by letting _Z = _(_B)- Furthermore, for values of _ in the region of

the juncture of the half plan form and body, the terms containing

d_/d_ which were omitted above in finding S'(_,K) and S"(_,K) (see
eqs. (DI7) and (DI9), respectively) must be evaluated since, generally,

for practical configurations, dDB/d_ _ O. If the local values of dDB/d_

are small enough to permit the approximation d_B/d_ = O, it will be

found convenient to treat the exposed extended half plan form as a complete

extended half plan form and use equations (D29) to (D31). In so doing,

however, care must be exercised in evaluating kx, ky, kz, SR, and C and
in properly shifting the upper (positive _ direction) and lower (negative

direction) sheared half plan forms when combining their distributions

to calculate the zero-lift interference wave drag between the sheared

half plan forms.
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The approximate distribution equations in the sample calculations

were derived by integrating the basic equations with respect to _ in

order to take advantage of the approximation made in appendix C for air-

foil sections with nonanalytic thickness distributions. Although these

approximate equations may be used for half plan forms for which the

airfoil-section thickness distribution is given by a simple analytical

expression, it is found more convenient, in such cases, to perform the

integration of the basic distribution equations in terms of _ as indi-

cated by equations (DI) to (D3). For example, the thickness distribution

of a parabolic-arc airfoil section, as shown in appendix C_ is

T(_) = i-_ 2 for -i _ _ _ i

From equation (C17)

Therefore, from equation (D7)

• = 1 - j

Hence, with the spanwise variation of the thickness, _(_), and the

boundary of the half plan form specified (with the boundaries known, the

spanwise variation of the half chord, _(_), is automatically known) all

the terms in equations (DI) to (D3) can be evaluated exactly. Furthermore,

if dq/d_ for the boundary is continuous, as in the case of an elliptic

plan-fo_n wing, the calculation of the distributions is greatly simplified

by virtue of the fact that a single equation specifies the limits of

integration.
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APPENDIX E

A PROCEDURE FOR CALCULATING LIFT DISTRIBUTIONS

FOR SHEARED WINGS

The lifting-pressure distribution supported by a wing can be defined

as the sum of several superposed distributions. These superposed lifting-

pressure distributions cam be written in coefficient form as

N M

Cp(x,y) = _anxn+_bmY m (El)

n=o m=o

where x and y are the conventional rectangular coordinates. The constant

coefficients an and bm are determined by specified boundary conditions,

such as lift_ pitching moment_ and desired properties of the lift distri-

bution. In reference 9 a method was developed, independent of thickness,

for warping delta and arrow plan-form wings with subsonic leading edges

and supersonic trailing edges to support a desired lift distribution at

0° angle of attack. The method employed a particular form of equation (El)

which was considered adequate to determine the lifting-pressure distribu-

tion of this specialized group of wings with acceptable accuracy. In terms

of the dimensionless coordinates defined in appendix A of this report_

this particular form of equation (El) can be written

_p(_,_) = ao + _ _+b_l_l+S2_ 2 (E2)

The longitudinal lift distribution is then easily obtained from

I

=/  p( ,n)dn (E3)
z(e)

where Cp(_,B) is given by equation (E2), and _Z(_ ) and _u(_ ) are
boundaries of the dimensionless plan form.

Just as in the case of the

area distribution, the lift dis-

tribution can be conveniently

determined in terms of that for

the sheared wings of each equiv-

alent body of revolution. The

local lifting pressure at any

point in the plan form is inde-

pendent of the shearing process.

Therefore_ with the aid of

sketch (g) it is clear that the

ffl

,I) | (K=,I)

,v/
0 i

Sketch (g)
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local pressure at any point in the sheared plan form, K, can be related
to the same local pressure at the corresponding point in the original

plan form, Ko, by the following transformation

top = _-(K-Ko) _ (E4)

where the subscript op denotes the original plan form. Using equa-

tion (E4) in equation (E2) the distribution of the lifting-pressure

coefficient for sheared wings can be written

_p(_,_,K): _o + Ko+---Y_ + _ Ko+l _ l_f+b2_2 (E_)

The integral of equation (E5) over the plan form in the _ direction

results in the frontal projection of the force distribution intercepted

on the given wing by the parallel oblique planes. The direction of the

frontal projection of the net force is perpendicular to the oblique

planes (see sketch (a)). With the subscript p used to denote this fact,

integration of equation (E5) yields

_p(_,K): o + Ko+l
+i

Ko+l Y J_ (_,K)

The values of the limits of integration for the sheared wings are deter-

mined in the same manner described in appendix D for area distributions

of sheared wings. However, in equation (E6) the limits are expressed in

terms of the _ integration rather than the _ integration. Finally,

it is the component of the force distribution in the _ direction (i.e.,

the lift distribution) which is employed in equation (2) in this case.

Hence, from sketch (a) it is clear that the lift in the _ direction is

L(_,K) = Lp(_,K)sin 8 (S7)

and

_.'(_,K) = _'({,K)sin 8 (E8)

Upon substitution of equation (E8) in the dimensionless form of

equation (2) of this report, it is clear that the total wave drag is most

conveniently computed by separating the effects on the wave drag of

thickness and lift, because only the lifting effect is affected by sin 8.
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APPENDIX F

SPECIAL COMPUTING PROCEDURE FOR THE METHOD

OF REFERENCE 3

If equation (3) of this report is integrated by parts, the zero-lift

wave drag of any slender configuration can be expressed as a function of

the first derivative of the area distribution of the configuration,

S'(x,_,e). From an expansion of S'(x,_,e) in a Fourier sine series,

the infinite series form of the supersonic area rule was developed in

reference 2 for calculating zero-lift wave drag for slender-body thin-

wing combinations; that is,

Z
n=l

where

o

2J_ _S(x,6,e) sin(nT)dqAn(_,S) = y bx (F2)

and

x = z1,_,v,+o,_,_,c__ 7c_ n_ cos m (F3)
2

The zero-lift wave drag of the equivalent bodies of revolution is given,

of course, by

_, °)] _D(#,0) = # q n[An(# , (F4)
n=l

The use of the Fourier series requires that application of the supersonic

area rule be restricted to configurations for which each equivalent body

of revolution satisfies the condition given by equation (4),

s'(-_,_,s) = s'(z,_,s)= o

In reference 3 the Tchebichef form of harmonic analysis was employed to

evaluate equation (F2). This permits zero-lift wave-drag calculations

by the supersonic area rule from a knowledge of the area distribution of

a configuration, S(x,_,e).
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The electronic-machine computing equipment at Amesis programed to
evaluate the Fourier sine series coefficients and compute the total zero-
lift wave drag of an equivalent body from the values of the area distri-
bution determined by a telereader at 201 points equally spaced over the
total length of an equivalent body. Equation (F4) requires an infinite
number of terms of the series. However_the practical application of
equation (F4) requires that the series be terminated at somevalue of n,
say N_ for which the series will converge. The existing machine-
computing program is set up to provide zero-lift wave-drag solutions for
N up to and including 49. In reference 3 it was demonstrated that for
configurations with no discontinuities in the area distribution or the
first derivative of the area distribution of a configuration N = 25
provides adequate convergence of the series_ and the method yields accu-
rate values of total zero-lift wave drag. This was found to be the case
for pairs of bodies of revolution of this report which also had no singu-
larities in the second derivative of the area distribution at the ends of
the bodies. For pairs of bodies_ at least one of which had singularities
in the second derivative of the area distribution at the ends, all of the
49 terms available were required to obtain adequate convergence of the
series. 4 For this reason 49 terms of the Fourier series for a 201-point
analysis of the area distribution of a configuration were used in this
report in order to consistently obtain the most accurate results by the
method of reference 3.

In addition to the choice of N, there exists another factor which
affects the convergence of a Fourier sine series. In reference i0 it is
pointed out that in performing a Fourier series analysis of the derivative
of the area distribution of a configuration the higher harmonics of the
series will be suppressed if the smallest allowed value of the length of
the configuration is used. Suppression of the higher harmonics results
in a more rapid convergence and a more accurate result for a given N
of the series. In the case of multiple-component configurations this is
easily accomplished (as suggested in ref. i0) by analyzing the area dis-
tribution of each componentover its individual length to obtain the
zero-lift wave drag of each componentalone and by analyzing the combined
area distribution of any two componentsover their total combinedlength
to obtain the zero-lift interference wave drag between components. The
effectiveness of this type of individual-length analysis has been
adequately demonstrated in the EVALUATIONOFTHEMETHODsection of this
report.

The machine-computing program for the method of reference 3 does not
yield the zero-lift interference wave drag directly. However_in addition
to the total zero-lift wave drag_ the program output sheets list the

4For bodies ixl and 5x5 in the arrangement of figure 3(a), the series
actually converges to the analytical value in the first two terms. How-
ever, to be consistent, data for these bodies computedby the method of
reference 3 are presented for N = 49.
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Fourier coefficients. The zero-lift interference wave drag can be
obtained by proper application of these coefficients. For instance, the
Fourier coefficients for a two-component configuration can be written

ATn(_,6 ) = AEn(_,e)+AHn(_,8) (F5)

From substitution of equation (F5) in equation (F4) the zero-lift inter-
ference wave drag between componentsof an equivalent body of revolution
is given by

_ nAEn(B,0)AHn(_, 0 ) (F6): q
n=l

Hence, by means of the Fourier coefficients of the program output sheet,

the zero-lift interference wave drag can easily be calculated by manual

computations in accordance with equation (F6).

The procedure described above was employed to calculate the

dimensionless zero-lift interference wave drag at M = i for pairs of

bodies of this report with _ = 0 (figs. 3(a) and 3(c)). It was found

convenient to compute these values according to the relation

Body E

DEH = (DEH) n even+(DEH)n odd

(F7) Body. .....

The separate terms of equation (F7)

were also used to compute the inter-

ference at M = i for the pairs of

bodies of this report with _ = 2

(fig. 3(b)) from the relation

DEH = n even-( )EH)nodd

(F8)

The derivation of equation (F8)_Eo(_)m
can best be understood by consider-

ing the two bodies shown by the

solid lines in the upper part of

sketch (h). If the area distribu-

tions of bodies E and H are ana-

lyzed in a Fourier series over the

length -i _ _ _ i, the contributions
to the total area distribution of

the even and odd parts of the

Fourier series, Se(_) and So(_),

respectively, can be constructed for

each body as shown in the sketch.

,_(_)

"SH,(()_

-I 0 I

Sketch (h)



72

The zero-lift interference wave drag between bodies E and H consists
of the sumof the zero-lift interference wave-drag contributions of the
even parts of the area distribution and that between the odd parts of the
area distribution (see eq. (F7)). The zero-lift interference wave drag
between the even and odd parts of the area distribution is identically
zero (see, e.g., bodies ix5 of table II). If body H were positioned
as shownby the dashed lines (_ = 2), the contribution to the total area
distribution of body H of the even part of its area distribution would
be the sameas before, but the contribution of the odd part of its area
distribution would be given by the dashed curve. This dashed curve is
exactly the negative of _Ho(_) for the original position of body H.
Consequently_ the zero-lift interference wave drag at M = i for the
configurations with _ = 2 was calculated by using equation (F8) and
the data previously obtained from equation (F7) for the configurations
with _ = 0 but analyzed over a length equal to the total combined length
of the bodies with _ = 2. Although this procedure has been employed
herein to obtain M = i interference drag for only _ = 2, it should be
noted that the general procedure is applicable for all _ > O.
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TABLE II.- DIMENSIONLESS ZERO-LIFT INTERFERENCE WAVE DRAG AT

MACX NUMBER i FOR CONFIGURATIONS OF FIGURE 3

Bodies

2 3 4 5 6 7 8 9

or

_ :0 _ :2 _ =0 _ :0 _, =2 S :0 _ :0 _ : 2

Anal rtical

i*×i* 7.064

l'x2 5.892

l'x3 5.152

l'x4 4.636

l'x5* 0

l'x6 0

l'x7 0

l'x8 0

2x2 7.368

2×3 7.733

2×4 7.744

2x5" 0
2x6 0

2x7 0

2x8 0

3x3 9.014

3x4 9.658

3x5" 0

3_6 0

3x7 0

3×8 0

4x4 10.86

4x5" 0

4w6 0

4×7 0

4x8 0

5*><5* 4.710

5"X6 2.946

5*×7 2.061

5"X8 1.545

6X6 2.947

6X7 2.578

6x8 2.213

7X7 2.576

7×8 2.414

8x8 2.413

*Denotes body with singularities in

Method of reference 3 Pr_sent method

1.068 7.005

.316 7.368

.178 9.01_

.123 10.86

-.487 4.733

-.055 2•947

-.017 2•576

-.oo7 2.413

6. 909

5 •885

5.153

4.636

-. 208

0

•004

0

7. 367

7.728

7• 742

•007

•004

0

0

9.o15

9.658

.001

0

0

0

io.85

o

o

o

o

4.549

2.942

2.o63

1.546

2. 945

2. 578

2.213

2.576

2.414

2.412

1.053

•538

.359

.880

.650

.245

•120

.074

• 318

• 234

• 191
• 286

• 119
.068

.045

•178

•148

•166

.081

.049

.033

.124

.123

.062

•038

.026

-.452

-.158

-.070

-.039

-.056

-.029

-.018

-.017

-.011

-.oo7

7.1

5.9

5.2

4.6

7.367

7.730

7.741

9.o12

9.65o

lO.85

4.7

2.9

2.1

1.5

2.946

2.578

2.212

2.575

2.414

2.412

7.1

5.9

5.2

4.6

7. 358

7. 728

7. 736

9. 003

9.65o

lO.84

4.7

2.9

2.0

1.5

2.941

2.573

2.209

2.570

2•411

2.406

o. 98

.51

.35

.28

.59

.22

.12

.o74

.316

•234

•191

.26

.119

.o69

.045

•178

•148

.16

.o81

.o48

•o33

.124

.12

.062

.038

•026

-.42

-.14

-.O67

-.041

-•055

-•030

-.o18

-. 017

-.O11

-.oo7

_"(_ at the ends•
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